{"id":"https://openalex.org/W2586956420","doi":"https://doi.org/10.1109/slt.2016.7846264","title":"Modelling speaker and channel variability using deep neural networks for robust speaker verification","display_name":"Modelling speaker and channel variability using deep neural networks for robust speaker verification","publication_year":2016,"publication_date":"2016-12-01","ids":{"openalex":"https://openalex.org/W2586956420","doi":"https://doi.org/10.1109/slt.2016.7846264","mag":"2586956420"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/slt.2016.7846264","pdf_url":null,"source":{"id":"https://openalex.org/S4363605953","display_name":"2022 IEEE Spoken Language Technology Workshop (SLT)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5102772985","display_name":"Gautam Bhattacharya","orcid":"https://orcid.org/0000-0003-4787-0604"},"institutions":[{"id":"https://openalex.org/I5023651","display_name":"McGill University","ror":"https://ror.org/01pxwe438","country_code":"CA","type":"education","lineage":["https://openalex.org/I5023651"]},{"id":"https://openalex.org/I4210111842","display_name":"Computer Research Institute of Montr\u00e9al","ror":"https://ror.org/0279d5115","country_code":"CA","type":"nonprofit","lineage":["https://openalex.org/I4210111842"]}],"countries":["CA"],"is_corresponding":false,"raw_author_name":"Gautam Bhattacharya","raw_affiliation_strings":["Computer Research Institute of Montreal, Montreal, Canada","McGill University, Montreal, Canada"],"affiliations":[{"raw_affiliation_string":"McGill University, Montreal, Canada","institution_ids":["https://openalex.org/I5023651"]},{"raw_affiliation_string":"Computer Research Institute of Montreal, Montreal, Canada","institution_ids":["https://openalex.org/I4210111842"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5088749621","display_name":"Jahangir Alam","orcid":"https://orcid.org/0000-0003-4174-9862"},"institutions":[{"id":"https://openalex.org/I4210111842","display_name":"Computer Research Institute of Montr\u00e9al","ror":"https://ror.org/0279d5115","country_code":"CA","type":"nonprofit","lineage":["https://openalex.org/I4210111842"]}],"countries":["CA"],"is_corresponding":false,"raw_author_name":"Jahangir Alam","raw_affiliation_strings":["Computer Research Institute of Montreal, Montreal, Canada"],"affiliations":[{"raw_affiliation_string":"Computer Research Institute of Montreal, Montreal, Canada","institution_ids":["https://openalex.org/I4210111842"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5000956085","display_name":"Patrick Kenn","orcid":null},"institutions":[{"id":"https://openalex.org/I4210111842","display_name":"Computer Research Institute of Montr\u00e9al","ror":"https://ror.org/0279d5115","country_code":"CA","type":"nonprofit","lineage":["https://openalex.org/I4210111842"]}],"countries":["CA"],"is_corresponding":false,"raw_author_name":"Patrick Kenn","raw_affiliation_strings":["Computer Research Institute of Montreal, Canada"],"affiliations":[{"raw_affiliation_string":"Computer Research Institute of Montreal, Canada","institution_ids":["https://openalex.org/I4210111842"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5114009216","display_name":"Vishwa Gupta","orcid":null},"institutions":[{"id":"https://openalex.org/I4210111842","display_name":"Computer Research Institute of Montr\u00e9al","ror":"https://ror.org/0279d5115","country_code":"CA","type":"nonprofit","lineage":["https://openalex.org/I4210111842"]}],"countries":["CA"],"is_corresponding":false,"raw_author_name":"Vishwa Gupta","raw_affiliation_strings":["Computer Research Institute of Montreal, Montreal, Canada"],"affiliations":[{"raw_affiliation_string":"Computer Research Institute of Montreal, Montreal, Canada","institution_ids":["https://openalex.org/I4210111842"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":2,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":1.459,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":33,"citation_normalized_percentile":{"value":0.841215,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":94,"max":95},"biblio":{"volume":null,"issue":null,"first_page":"192","last_page":"198"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10201","display_name":"Speech Recognition and Synthesis","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10201","display_name":"Speech Recognition and Synthesis","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10860","display_name":"Speech and Audio Processing","score":0.9992,"subfield":{"id":"https://openalex.org/subfields/1711","display_name":"Signal Processing"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11309","display_name":"Music and Audio Processing","score":0.9949,"subfield":{"id":"https://openalex.org/subfields/1711","display_name":"Signal Processing"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/speaker-verification","display_name":"Speaker Verification","score":0.81349623},{"id":"https://openalex.org/keywords/normalization","display_name":"Normalization","score":0.72276366},{"id":"https://openalex.org/keywords/word-error-rate","display_name":"Word error rate","score":0.6285484},{"id":"https://openalex.org/keywords/deep-neural-networks","display_name":"Deep Neural Networks","score":0.42047155}],"concepts":[{"id":"https://openalex.org/C2982762665","wikidata":"https://www.wikidata.org/wiki/Q1145189","display_name":"Speaker verification","level":3,"score":0.81349623},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.7783972},{"id":"https://openalex.org/C136886441","wikidata":"https://www.wikidata.org/wiki/Q926129","display_name":"Normalization (sociology)","level":2,"score":0.72276366},{"id":"https://openalex.org/C40969351","wikidata":"https://www.wikidata.org/wiki/Q3516228","display_name":"Word error rate","level":2,"score":0.6285484},{"id":"https://openalex.org/C28490314","wikidata":"https://www.wikidata.org/wiki/Q189436","display_name":"Speech recognition","level":1,"score":0.5992781},{"id":"https://openalex.org/C133892786","wikidata":"https://www.wikidata.org/wiki/Q1145189","display_name":"Speaker recognition","level":2,"score":0.59166586},{"id":"https://openalex.org/C95623464","wikidata":"https://www.wikidata.org/wiki/Q1096149","display_name":"Classifier (UML)","level":2,"score":0.55827785},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.5400115},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.5326991},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.5013859},{"id":"https://openalex.org/C2221639","wikidata":"https://www.wikidata.org/wiki/Q2877","display_name":"Discrete cosine transform","level":3,"score":0.4363973},{"id":"https://openalex.org/C2984842247","wikidata":"https://www.wikidata.org/wiki/Q197536","display_name":"Deep neural networks","level":3,"score":0.42047155},{"id":"https://openalex.org/C144024400","wikidata":"https://www.wikidata.org/wiki/Q21201","display_name":"Sociology","level":0,"score":0.0},{"id":"https://openalex.org/C19165224","wikidata":"https://www.wikidata.org/wiki/Q23404","display_name":"Anthropology","level":1,"score":0.0},{"id":"https://openalex.org/C115961682","wikidata":"https://www.wikidata.org/wiki/Q860623","display_name":"Image (mathematics)","level":2,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/slt.2016.7846264","pdf_url":null,"source":{"id":"https://openalex.org/S4363605953","display_name":"2022 IEEE Spoken Language Technology Workshop (SLT)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"score":0.73,"id":"https://metadata.un.org/sdg/10","display_name":"Reduced inequalities"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":18,"referenced_works":["https://openalex.org/W111477576","https://openalex.org/W123007118","https://openalex.org/W1806891645","https://openalex.org/W1836465849","https://openalex.org/W1916834241","https://openalex.org/W2004497042","https://openalex.org/W2039057510","https://openalex.org/W2046015436","https://openalex.org/W2095705004","https://openalex.org/W2150769028","https://openalex.org/W2163922914","https://openalex.org/W2183016404","https://openalex.org/W2187089797","https://openalex.org/W2406312423","https://openalex.org/W2407374891","https://openalex.org/W2485419308","https://openalex.org/W2557283755","https://openalex.org/W2949117887"],"related_works":["https://openalex.org/W66821593","https://openalex.org/W4252590334","https://openalex.org/W3141593045","https://openalex.org/W3119184205","https://openalex.org/W3096066489","https://openalex.org/W2543777506","https://openalex.org/W2407001684","https://openalex.org/W2134501921","https://openalex.org/W204267554","https://openalex.org/W1521299571"],"abstract_inverted_index":{"We":[0,101],"propose":[1],"to":[2,24,47,99,145],"improve":[3],"the":[4,13,91,107,133],"performance":[5],"of":[6,109,141],"i-vector":[7],"based":[8],"speaker":[9,66],"verification":[10,67],"by":[11],"processing":[12],"i-vectors":[14,78],"with":[15,81,127],"a":[16,25,56,70,82],"deep":[17],"neural":[18],"network":[19],"before":[20],"they":[21],"are":[22],"fed":[23],"cosine":[26,83,128],"distance":[27,84,129],"or":[28],"probabilistic":[29],"linear":[30],"discriminant":[31],"analysis":[32],"(PLDA)":[33],"classifier.":[34],"To":[35],"this":[36],"end":[37],"we":[38,45],"build":[39],"on":[40],"an":[41,137],"existing":[42],"model":[43,88],"that":[44],"refer":[46],"as":[48,143],"Non-linear":[49],"Within":[50],"Class":[51],"Normalization":[52],"(NWCN)":[53],"and":[54,72],"introduce":[55],"novel":[57],"Speaker":[58],"Classifier":[59],"Network":[60],"(SCN).":[61],"Both":[62],"models":[63,105],"deliver":[64],"impressive":[65],"performance,":[68],"showing":[69],"56%":[71],"68%":[73],"relative":[74],"improvement":[75],"over":[76],"standard":[77],"when":[79,113],"combined":[80],"backend.":[85],"The":[86],"NWCN":[87],"also":[89,102],"reduces":[90],"equal":[92,138],"error":[93,139],"rate":[94,140],"for":[95],"PLDA":[96,134],"from":[97],"1.78%":[98],"1.63%.":[100],"test":[103],"these":[104,121],"under":[106],"constraints":[108],"domain":[110],"mismatch,":[111],"i.e.":[112],"no":[114],"in-domain":[115],"training":[116],"data":[117],"is":[118],"available.":[119],"Under":[120],"conditions,":[122],"SCN":[123],"features":[124],"in":[125],"combination":[126],"performs":[130],"better":[131],"than":[132],"baseline,":[135],"achieving":[136],"2.92%":[142],"compared":[144],"3.37%.":[146]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2586956420","counts_by_year":[{"year":2023,"cited_by_count":2},{"year":2021,"cited_by_count":2},{"year":2020,"cited_by_count":15},{"year":2019,"cited_by_count":6},{"year":2018,"cited_by_count":3},{"year":2017,"cited_by_count":4}],"updated_date":"2024-12-10T00:25:28.029399","created_date":"2017-02-17"}