{"id":"https://openalex.org/W3184543679","doi":"https://doi.org/10.1109/siu53274.2021.9477988","title":"Few-Shot Learning for Segmentation of Yeast Cell Microscopy Images","display_name":"Few-Shot Learning for Segmentation of Yeast Cell Microscopy Images","publication_year":2021,"publication_date":"2021-06-09","ids":{"openalex":"https://openalex.org/W3184543679","doi":"https://doi.org/10.1109/siu53274.2021.9477988","mag":"3184543679"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/siu53274.2021.9477988","pdf_url":null,"source":{"id":"https://openalex.org/S4363607818","display_name":"2022 30th Signal Processing and Communications Applications Conference (SIU)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5035385332","display_name":"Muhammet Alkan","orcid":"https://orcid.org/0009-0007-6261-7646"},"institutions":[{"id":"https://openalex.org/I4210146544","display_name":"Fatih Sultan Mehmet Waqf University","ror":"https://ror.org/04mma4681","country_code":"TR","type":"education","lineage":["https://openalex.org/I4210146544"]}],"countries":["TR"],"is_corresponding":false,"raw_author_name":"Muhammet Alkan","raw_affiliation_strings":["Fatih Sultan Mehmet Vakıf Üniversitesi,Bilgisayar M\u00fchendisli\u011fi B\u00f6l\u00fcm\u00fc,İstanbul,Türkiye"],"affiliations":[{"raw_affiliation_string":"Fatih Sultan Mehmet Vakıf Üniversitesi,Bilgisayar M\u00fchendisli\u011fi B\u00f6l\u00fcm\u00fc,İstanbul,Türkiye","institution_ids":["https://openalex.org/I4210146544"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5034287311","display_name":"Berna K\u0131raz","orcid":"https://orcid.org/0000-0002-8428-3217"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Berna K\u0131raz","raw_affiliation_strings":["Optofil Optik ve Elektronik Tasarım A.Ş.,İstanbul,Türkiye"],"affiliations":[{"raw_affiliation_string":"Optofil Optik ve Elektronik Tasarım A.Ş.,İstanbul,Türkiye","institution_ids":[]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5021255469","display_name":"Furkan Eren","orcid":"https://orcid.org/0000-0002-6770-7073"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Furkan Eren","raw_affiliation_strings":["Optofil Optik ve Elektronik Tasarım A.Ş.,İstanbul,Türkiye"],"affiliations":[{"raw_affiliation_string":"Optofil Optik ve Elektronik Tasarım A.Ş.,İstanbul,Türkiye","institution_ids":[]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5073052171","display_name":"Yi\u011fit Uysall\u0131","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Yi\u011fit Uysalli","raw_affiliation_strings":["Koç Üniversitesi,Fizik B\u00f6l\u00fcm\u00fc"],"affiliations":[{"raw_affiliation_string":"Koç Üniversitesi,Fizik B\u00f6l\u00fcm\u00fc","institution_ids":[]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5078807744","display_name":"Alper K\u0131raz","orcid":"https://orcid.org/0000-0001-7977-1286"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Alper K\u0131raz","raw_affiliation_strings":["Koç Üniversitesi,Fizik B\u00f6l\u00fcm\u00fc"],"affiliations":[{"raw_affiliation_string":"Koç Üniversitesi,Fizik B\u00f6l\u00fcm\u00fc","institution_ids":[]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.0,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":57},"biblio":{"volume":null,"issue":null,"first_page":"1","last_page":"4"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T13114","display_name":"Image Processing Techniques and Applications","score":0.9987,"subfield":{"id":"https://openalex.org/subfields/2214","display_name":"Media Technology"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T13114","display_name":"Image Processing Techniques and Applications","score":0.9987,"subfield":{"id":"https://openalex.org/subfields/2214","display_name":"Media Technology"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12859","display_name":"Cell Image Analysis Techniques","score":0.9974,"subfield":{"id":"https://openalex.org/subfields/1304","display_name":"Biophysics"},"field":{"id":"https://openalex.org/fields/13","display_name":"Biochemistry, Genetics and Molecular Biology"},"domain":{"id":"https://openalex.org/domains/1","display_name":"Life Sciences"}},{"id":"https://openalex.org/T10862","display_name":"AI in cancer detection","score":0.9832,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/scratch","display_name":"Scratch","score":0.4976733}],"concepts":[{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.7381295},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.7362313},{"id":"https://openalex.org/C89600930","wikidata":"https://www.wikidata.org/wiki/Q1423946","display_name":"Segmentation","level":2,"score":0.67538667},{"id":"https://openalex.org/C64543145","wikidata":"https://www.wikidata.org/wiki/Q162942","display_name":"Intersection (aeronautics)","level":2,"score":0.6313852},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.6202248},{"id":"https://openalex.org/C124504099","wikidata":"https://www.wikidata.org/wiki/Q56933","display_name":"Image segmentation","level":3,"score":0.56236076},{"id":"https://openalex.org/C115961682","wikidata":"https://www.wikidata.org/wiki/Q860623","display_name":"Image (mathematics)","level":2,"score":0.556678},{"id":"https://openalex.org/C177264268","wikidata":"https://www.wikidata.org/wiki/Q1514741","display_name":"Set (abstract data type)","level":2,"score":0.5283333},{"id":"https://openalex.org/C2781235140","wikidata":"https://www.wikidata.org/wiki/Q275131","display_name":"Scratch","level":2,"score":0.4976733},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.47817856},{"id":"https://openalex.org/C139807058","wikidata":"https://www.wikidata.org/wiki/Q352374","display_name":"Adaptation (eye)","level":2,"score":0.4729533},{"id":"https://openalex.org/C108583219","wikidata":"https://www.wikidata.org/wiki/Q197536","display_name":"Deep learning","level":2,"score":0.460722},{"id":"https://openalex.org/C98045186","wikidata":"https://www.wikidata.org/wiki/Q205663","display_name":"Process (computing)","level":2,"score":0.4549711},{"id":"https://openalex.org/C31972630","wikidata":"https://www.wikidata.org/wiki/Q844240","display_name":"Computer vision","level":1,"score":0.4349415},{"id":"https://openalex.org/C9417928","wikidata":"https://www.wikidata.org/wiki/Q1070689","display_name":"Image processing","level":3,"score":0.43105835},{"id":"https://openalex.org/C120665830","wikidata":"https://www.wikidata.org/wiki/Q14620","display_name":"Optics","level":1,"score":0.11892453},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C127413603","wikidata":"https://www.wikidata.org/wiki/Q11023","display_name":"Engineering","level":0,"score":0.0},{"id":"https://openalex.org/C199360897","wikidata":"https://www.wikidata.org/wiki/Q9143","display_name":"Programming language","level":1,"score":0.0},{"id":"https://openalex.org/C146978453","wikidata":"https://www.wikidata.org/wiki/Q3798668","display_name":"Aerospace engineering","level":1,"score":0.0},{"id":"https://openalex.org/C111919701","wikidata":"https://www.wikidata.org/wiki/Q9135","display_name":"Operating system","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/siu53274.2021.9477988","pdf_url":null,"source":{"id":"https://openalex.org/S4363607818","display_name":"2022 30th Signal Processing and Communications Applications Conference (SIU)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"score":0.42,"id":"https://metadata.un.org/sdg/12","display_name":"Responsible consumption and production"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":8,"referenced_works":["https://openalex.org/W1542791059","https://openalex.org/W2117539524","https://openalex.org/W2194775991","https://openalex.org/W2604763608","https://openalex.org/W2618530766","https://openalex.org/W2753160622","https://openalex.org/W2795900505","https://openalex.org/W3040102973"],"related_works":["https://openalex.org/W322691623","https://openalex.org/W2770018148","https://openalex.org/W2494989134","https://openalex.org/W2475116013","https://openalex.org/W2385135707","https://openalex.org/W2358308169","https://openalex.org/W2140315382","https://openalex.org/W2082556335","https://openalex.org/W2066741154","https://openalex.org/W2059109728"],"abstract_inverted_index":{"Cell":[0],"segmentation":[1],"from":[2,116],"microscopic":[3,59,71,129],"images":[4,60,130],"can":[5,78,104],"be":[6,79,105],"performed":[7],"using":[8,92,138],"deep":[9],"neural":[10,32],"networks":[11],"or":[12,123],"image":[13,39,72],"processing":[14],"techniques.":[15],"In":[16,95,126],"addition":[17,166],"to":[18,43,167,173],"their":[19],"inherent":[20],"difficulties,":[21],"these":[22],"techniques":[23],"come":[24],"together":[25],"with":[26,34,107,143],"the":[27,31,85,110,162,168],"requirement":[28],"of":[29,38,55,84,88,131,147,153],"feeding":[30],"network":[33],"a":[35,45,63,89,144],"large":[36],"number":[37,146],"samples":[40],"in":[41,53,165],"order":[42],"obtain":[44],"good":[46],"result.":[47],"However,":[48],"this":[49,96,127],"is":[50],"not":[51,114],"sustainable":[52],"terms":[54],"collecting":[56],"and":[57,61,65,73,101,136],"labeling":[58],"represents":[62],"costly":[64],"timeconsuming":[66],"solution":[67],"for":[68,118],"every":[69],"new":[70,120],"cell":[74,121],"type.":[75],"Instead,":[76],"fine-tuning":[77,142],"employed":[80],"by":[81],"taking":[82],"advantage":[83],"adaptation":[86],"ability":[87],"model":[90,169],"trained":[91],"meta-learning":[93],"algorithms.":[94],"way,":[97],"while":[98],"more":[99],"general":[100],"better":[102],"results":[103],"obtained":[106,160],"fewer":[108],"samples,":[109,148],"training":[111],"process":[112],"does":[113],"start":[115],"scratch":[117],"each":[119],"type":[122],"data":[124],"set.":[125],"article,":[128],"yeast":[132],"cells":[133],"were":[134],"recorded":[135],"analyzed":[137],"Reptile":[139],"algorithm.":[140],"After":[141],"small":[145],"an":[149],"average":[150],"success":[151],"rate":[152],"81%":[154],"IoU":[155],"(Intersection":[156],"over":[157],"Union)":[158],"was":[159],"on":[161],"test":[163],"pictures":[164],"accuracy":[170],"reaching":[171],"up":[172],"87%.":[174]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W3184543679","counts_by_year":[],"updated_date":"2025-01-20T12:57:03.184452","created_date":"2021-08-02"}