{"id":"https://openalex.org/W4313413497","doi":"https://doi.org/10.1109/sec54971.2022.00012","title":"FLiCR: A Fast and Lightweight LiDAR Point Cloud Compression Based on Lossy RI","display_name":"FLiCR: A Fast and Lightweight LiDAR Point Cloud Compression Based on Lossy RI","publication_year":2022,"publication_date":"2022-12-01","ids":{"openalex":"https://openalex.org/W4313413497","doi":"https://doi.org/10.1109/sec54971.2022.00012"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/sec54971.2022.00012","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"proceedings-article","indexed_in":["arxiv","crossref","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"http://arxiv.org/pdf/2307.15005","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5103240281","display_name":"Jin Heo","orcid":"https://orcid.org/0000-0002-0900-9883"},"institutions":[{"id":"https://openalex.org/I130701444","display_name":"Georgia Institute of Technology","ror":"https://ror.org/01zkghx44","country_code":"US","type":"education","lineage":["https://openalex.org/I130701444"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Jin Heo","raw_affiliation_strings":["Georgia Institute of Technology, Atlanta, Georgia, USA"],"affiliations":[{"raw_affiliation_string":"Georgia Institute of Technology, Atlanta, Georgia, USA","institution_ids":["https://openalex.org/I130701444"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5016488794","display_name":"C. R. Phillips","orcid":"https://orcid.org/0000-0001-5307-153X"},"institutions":[],"countries":["US"],"is_corresponding":false,"raw_author_name":"Christopher Phillips","raw_affiliation_strings":["Adeia, Hartwell, Georgia, USA"],"affiliations":[{"raw_affiliation_string":"Adeia, Hartwell, Georgia, USA","institution_ids":[]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5085918364","display_name":"Ada Gavrilovska","orcid":"https://orcid.org/0000-0003-4199-2512"},"institutions":[{"id":"https://openalex.org/I130701444","display_name":"Georgia Institute of Technology","ror":"https://ror.org/01zkghx44","country_code":"US","type":"education","lineage":["https://openalex.org/I130701444"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Ada Gavrilovska","raw_affiliation_strings":["Georgia Institute of Technology, Atlanta, Georgia, USA"],"affiliations":[{"raw_affiliation_string":"Georgia Institute of Technology, Atlanta, Georgia, USA","institution_ids":["https://openalex.org/I130701444"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":true,"fulltext_origin":"pdf","cited_by_count":5,"citation_normalized_percentile":{"value":0.999478,"is_in_top_1_percent":true,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":83,"max":85},"biblio":{"volume":null,"issue":null,"first_page":"54","last_page":"67"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10191","display_name":"Robotics and Sensor-Based Localization","score":0.9998,"subfield":{"id":"https://openalex.org/subfields/2202","display_name":"Aerospace Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10191","display_name":"Robotics and Sensor-Based Localization","score":0.9998,"subfield":{"id":"https://openalex.org/subfields/2202","display_name":"Aerospace Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10531","display_name":"Advanced Vision and Imaging","score":0.9993,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10331","display_name":"Video Surveillance and Tracking Methods","score":0.9991,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/lossy-compression","display_name":"Lossy compression","score":0.8288414},{"id":"https://openalex.org/keywords/ranging","display_name":"Ranging","score":0.53718984}],"concepts":[{"id":"https://openalex.org/C51399673","wikidata":"https://www.wikidata.org/wiki/Q504027","display_name":"Lidar","level":2,"score":0.8782181},{"id":"https://openalex.org/C165021410","wikidata":"https://www.wikidata.org/wiki/Q55564","display_name":"Lossy compression","level":2,"score":0.8288414},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.76671314},{"id":"https://openalex.org/C131979681","wikidata":"https://www.wikidata.org/wiki/Q1899648","display_name":"Point cloud","level":2,"score":0.7329414},{"id":"https://openalex.org/C115051666","wikidata":"https://www.wikidata.org/wiki/Q6522493","display_name":"Ranging","level":2,"score":0.53718984},{"id":"https://openalex.org/C78548338","wikidata":"https://www.wikidata.org/wiki/Q2493","display_name":"Data compression","level":2,"score":0.5035011},{"id":"https://openalex.org/C106301342","wikidata":"https://www.wikidata.org/wiki/Q4117933","display_name":"Entropy (arrow of time)","level":2,"score":0.44895965},{"id":"https://openalex.org/C28855332","wikidata":"https://www.wikidata.org/wiki/Q198099","display_name":"Quantization (signal processing)","level":2,"score":0.43637317},{"id":"https://openalex.org/C162307627","wikidata":"https://www.wikidata.org/wiki/Q204833","display_name":"Enhanced Data Rates for GSM Evolution","level":2,"score":0.4286449},{"id":"https://openalex.org/C31972630","wikidata":"https://www.wikidata.org/wiki/Q844240","display_name":"Computer vision","level":1,"score":0.3958508},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.3144834},{"id":"https://openalex.org/C62649853","wikidata":"https://www.wikidata.org/wiki/Q199687","display_name":"Remote sensing","level":1,"score":0.29991436},{"id":"https://openalex.org/C205649164","wikidata":"https://www.wikidata.org/wiki/Q1071","display_name":"Geography","level":0,"score":0.106839},{"id":"https://openalex.org/C76155785","wikidata":"https://www.wikidata.org/wiki/Q418","display_name":"Telecommunications","level":1,"score":0.07612926},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C62520636","wikidata":"https://www.wikidata.org/wiki/Q944","display_name":"Quantum mechanics","level":1,"score":0.0}],"mesh":[],"locations_count":4,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/sec54971.2022.00012","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2307.15005","pdf_url":"http://arxiv.org/pdf/2307.15005","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2307.15005","pdf_url":"https://arxiv.org/pdf/2307.15005","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2307.15005","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2307.15005","pdf_url":"http://arxiv.org/pdf/2307.15005","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[{"display_name":"Decent work and economic growth","score":0.48,"id":"https://metadata.un.org/sdg/8"}],"grants":[{"funder":"https://openalex.org/F4320306076","funder_display_name":"National Science Foundation","award_id":"CCF-2217070,CNS-1909769"}],"datasets":[],"versions":["https://openalex.org/W4313413497"],"referenced_works_count":58,"referenced_works":["https://openalex.org/W1529450504","https://openalex.org/W1869828010","https://openalex.org/W1981585303","https://openalex.org/W1988888548","https://openalex.org/W2003554791","https://openalex.org/W2029016069","https://openalex.org/W2049479307","https://openalex.org/W2052134617","https://openalex.org/W206332823","https://openalex.org/W2085429458","https://openalex.org/W2103281825","https://openalex.org/W2104497032","https://openalex.org/W2105824580","https://openalex.org/W2107745473","https://openalex.org/W2115579991","https://openalex.org/W2132563333","https://openalex.org/W2137706341","https://openalex.org/W2146395539","https://openalex.org/W2152281536","https://openalex.org/W2152864241","https://openalex.org/W2187463565","https://openalex.org/W2296228853","https://openalex.org/W2488097972","https://openalex.org/W2567458831","https://openalex.org/W2574604241","https://openalex.org/W2798965597","https://openalex.org/W2801812559","https://openalex.org/W2897529137","https://openalex.org/W2909157769","https://openalex.org/W2915771847","https://openalex.org/W2917690002","https://openalex.org/W2949708697","https://openalex.org/W2952122856","https://openalex.org/W2955189650","https://openalex.org/W2963121255","https://openalex.org/W2963150697","https://openalex.org/W2963182550","https://openalex.org/W2965289829","https://openalex.org/W2965376383","https://openalex.org/W2967494177","https://openalex.org/W2968296999","https://openalex.org/W2968591670","https://openalex.org/W3008105217","https://openalex.org/W3014200484","https://openalex.org/W3020686182","https://openalex.org/W3034236957","https://openalex.org/W3034314779","https://openalex.org/W3035275207","https://openalex.org/W3035428054","https://openalex.org/W3043597883","https://openalex.org/W3099936357","https://openalex.org/W3109870774","https://openalex.org/W3118341329","https://openalex.org/W3131373811","https://openalex.org/W3147959344","https://openalex.org/W3175145712","https://openalex.org/W3179630053","https://openalex.org/W3188483917"],"related_works":["https://openalex.org/W4384342390","https://openalex.org/W4247601675","https://openalex.org/W3180760233","https://openalex.org/W3035703949","https://openalex.org/W2888954728","https://openalex.org/W2552401318","https://openalex.org/W2547124190","https://openalex.org/W2385628723","https://openalex.org/W108076602","https://openalex.org/W1033938421"],"abstract_inverted_index":{"Light":[0],"detection":[1,213],"and":[2,13,75,94,118,132,145,165,174,197,205,214],"ranging":[3],"(LiDAR)":[4],"sensors":[5],"are":[6],"becoming":[7],"available":[8],"on":[9,67,109,210],"modern":[10],"mobile":[11,36],"devices":[12,37],"provide":[14],"a":[15,72,92,162,167],"3D":[16,211],"sensing":[17],"capability.":[18],"This":[19,88],"new":[20,168],"capability":[21],"is":[22,32,107,140,185],"beneficial":[23],"for":[24,34,101,121,157,177,188],"perceptions":[25,41,66,191],"in":[26,42],"various":[27],"use":[28,39],"cases,":[29],"but":[30,63],"it":[31],"challenging":[33],"resource-constrained":[35],"to":[38,58,79],"the":[40,65,68,80,135,151,159,193,200,208],"real-time":[43,190],"because":[44],"of":[45,83,137,153,161,202],"their":[46],"high":[47],"computational":[48],"complexity.":[49],"In":[50,147],"this":[51],"context,":[52],"edge":[53,69],"computing":[54],"can":[55],"be":[56],"used":[57],"enable":[59],"LiDAR":[60,84,96,195,215],"online":[61,104],"perceptions,":[62],"offloading":[64],"server":[70],"requires":[71],"low-latency,":[73],"lightweight,":[74],"efficient":[76],"compression":[77,99,139,204],"due":[78],"large":[81],"volume":[82],"point":[85,97,163],"clouds":[86],"data.":[87],"paper":[89],"presents":[90],"FLiCR,":[91],"fast":[93],"lightweight":[95],"cloud":[98],"method":[100],"enabling":[102],"edge-assisted":[103,189],"perceptions.":[105],"FLiCR":[106,124,184],"based":[108],"range":[110],"images":[111],"(RI)":[112],"as":[113],"an":[114],"intermediate":[115],"representation":[116],"(IR),":[117],"dictionary":[119],"coding":[120],"compressing":[122],"RIs.":[123],"achieves":[125],"its":[126],"benefits":[127],"by":[128],"leveraging":[129],"lossy":[130,178],"RIs,":[131],"we":[133,149,198],"show":[134,183],"efficiency":[136],"bytestream":[138],"largely":[141],"improved":[142],"with":[143,207],"quantization":[144],"subsampling.":[146],"addition,":[148],"identify":[150],"limitation":[152],"current":[154],"quality":[155],"metrics":[156],"presenting":[158],"entropy":[160],"cloud,":[164],"introduce":[166],"metric":[169,206],"that":[170],"reflects":[171],"both":[172],"point-wise":[173],"entropy-wise":[175],"qualities":[176],"IRs.":[179],"The":[180],"evaluation":[181],"results":[182],"more":[186],"suitable":[187],"than":[192],"existing":[194],"compressions,":[196],"demonstrate":[199],"effectiveness":[201],"our":[203],"evaluations":[209],"object":[212],"SLAM.":[216]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4313413497","counts_by_year":[{"year":2024,"cited_by_count":3},{"year":2023,"cited_by_count":1},{"year":2022,"cited_by_count":1}],"updated_date":"2024-12-30T08:35:54.101660","created_date":"2023-01-06"}