{"id":"https://openalex.org/W3112485768","doi":"https://doi.org/10.1109/scc49832.2020.00071","title":"Novel EEG Risk Framework to Identify Insider Threats in National Critical Infrastructure Using Deep Learning Techniques","display_name":"Novel EEG Risk Framework to Identify Insider Threats in National Critical Infrastructure Using Deep Learning Techniques","publication_year":2020,"publication_date":"2020-11-01","ids":{"openalex":"https://openalex.org/W3112485768","doi":"https://doi.org/10.1109/scc49832.2020.00071","mag":"3112485768"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/scc49832.2020.00071","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5021736577","display_name":"Ahmed Y. Al Hammadi","orcid":null},"institutions":[{"id":"https://openalex.org/I176601375","display_name":"Khalifa University of Science and Technology","ror":"https://ror.org/05hffr360","country_code":"AE","type":"education","lineage":["https://openalex.org/I176601375"]}],"countries":["AE"],"is_corresponding":false,"raw_author_name":"Ahmed Y. Al Hammadi","raw_affiliation_strings":["Department of Electrical Engineering and Computer Science, Khalifa University of Science and Technology, Abu Dhabi, UAE"],"affiliations":[{"raw_affiliation_string":"Department of Electrical Engineering and Computer Science, Khalifa University of Science and Technology, Abu Dhabi, UAE","institution_ids":["https://openalex.org/I176601375"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5044552714","display_name":"Chan Yeob Yeun","orcid":"https://orcid.org/0000-0002-1398-952X"},"institutions":[{"id":"https://openalex.org/I176601375","display_name":"Khalifa University of Science and Technology","ror":"https://ror.org/05hffr360","country_code":"AE","type":"education","lineage":["https://openalex.org/I176601375"]}],"countries":["AE"],"is_corresponding":false,"raw_author_name":"Chan Yeob Yeun","raw_affiliation_strings":["Department of Electrical Engineering and Computer Science, Khalifa University of Science and Technology, Abu Dhabi, UAE"],"affiliations":[{"raw_affiliation_string":"Department of Electrical Engineering and Computer Science, Khalifa University of Science and Technology, Abu Dhabi, UAE","institution_ids":["https://openalex.org/I176601375"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5075830877","display_name":"Ernesto Damiani","orcid":"https://orcid.org/0000-0002-9557-6496"},"institutions":[{"id":"https://openalex.org/I176601375","display_name":"Khalifa University of Science and Technology","ror":"https://ror.org/05hffr360","country_code":"AE","type":"education","lineage":["https://openalex.org/I176601375"]}],"countries":["AE"],"is_corresponding":false,"raw_author_name":"Ernesto Damiani","raw_affiliation_strings":["Department of Electrical Engineering and Computer Science, Khalifa University of Science and Technology, Abu Dhabi, UAE"],"affiliations":[{"raw_affiliation_string":"Department of Electrical Engineering and Computer Science, Khalifa University of Science and Technology, Abu Dhabi, UAE","institution_ids":["https://openalex.org/I176601375"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.411,"has_fulltext":false,"cited_by_count":5,"citation_normalized_percentile":{"value":0.654293,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":79,"max":81},"biblio":{"volume":null,"issue":null,"first_page":"469","last_page":"471"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10400","display_name":"Network Intrusion Detection and Defense Mechanisms","score":0.9923,"subfield":{"id":"https://openalex.org/subfields/1705","display_name":"Computer Networks and Communications"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10400","display_name":"Network Intrusion Detection and Defense Mechanisms","score":0.9923,"subfield":{"id":"https://openalex.org/subfields/1705","display_name":"Computer Networks and Communications"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11512","display_name":"Anomaly Detection in High-Dimensional Data","score":0.9913,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10917","display_name":"Security Challenges in Smart Grid Systems","score":0.9796,"subfield":{"id":"https://openalex.org/subfields/2207","display_name":"Control and Systems Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/intrusion-detection","display_name":"Intrusion Detection","score":0.542715},{"id":"https://openalex.org/keywords/cyber-physical-systems","display_name":"Cyber-Physical Systems","score":0.537375},{"id":"https://openalex.org/keywords/insider-threat","display_name":"Insider threat","score":0.5343622},{"id":"https://openalex.org/keywords/deep-learning","display_name":"Deep Learning","score":0.514011},{"id":"https://openalex.org/keywords/false-data-injection-attacks","display_name":"False Data Injection Attacks","score":0.513394}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.7658975},{"id":"https://openalex.org/C108583219","wikidata":"https://www.wikidata.org/wiki/Q197536","display_name":"Deep learning","level":2,"score":0.62258035},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.5601305},{"id":"https://openalex.org/C2776633304","wikidata":"https://www.wikidata.org/wiki/Q6038026","display_name":"Insider threat","level":3,"score":0.5343622},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.5284871},{"id":"https://openalex.org/C95623464","wikidata":"https://www.wikidata.org/wiki/Q1096149","display_name":"Classifier (UML)","level":2,"score":0.5166857},{"id":"https://openalex.org/C38652104","wikidata":"https://www.wikidata.org/wiki/Q3510521","display_name":"Computer security","level":1,"score":0.48881862},{"id":"https://openalex.org/C2778971194","wikidata":"https://www.wikidata.org/wiki/Q1664551","display_name":"Insider","level":2,"score":0.47745162},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.45622215},{"id":"https://openalex.org/C35525427","wikidata":"https://www.wikidata.org/wiki/Q745881","display_name":"Intrusion detection system","level":2,"score":0.4309089},{"id":"https://openalex.org/C17744445","wikidata":"https://www.wikidata.org/wiki/Q36442","display_name":"Political science","level":0,"score":0.0},{"id":"https://openalex.org/C199539241","wikidata":"https://www.wikidata.org/wiki/Q7748","display_name":"Law","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/scc49832.2020.00071","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"score":0.65,"id":"https://metadata.un.org/sdg/9","display_name":"Industry, innovation and infrastructure"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":7,"referenced_works":["https://openalex.org/W1975947418","https://openalex.org/W2026384313","https://openalex.org/W2064353709","https://openalex.org/W2889796013","https://openalex.org/W2933579063","https://openalex.org/W2954201390","https://openalex.org/W2966861734"],"related_works":["https://openalex.org/W4387194049","https://openalex.org/W4205304595","https://openalex.org/W3136170567","https://openalex.org/W308359497","https://openalex.org/W2979782961","https://openalex.org/W2947769183","https://openalex.org/W2766781562","https://openalex.org/W2063508592","https://openalex.org/W2018332730","https://openalex.org/W1499596878"],"abstract_inverted_index":{"The":[0,84,95,144],"Cybersecurity":[1],"of":[2,26,35,48,69,74,97,127,180,187],"organization":[3],"is":[4,44,86,147,161,175],"becoming":[5],"quite":[6],"alarming":[7],"especially":[8],"in":[9,31,37,76],"National":[10],"Critical":[11],"Infrastructure":[12],"(NCI)":[13],"as":[14,89],"to":[15,65,138,164,176,190],"protect":[16],"their":[17],"sensitive":[18],"information":[19],"and":[20,50,82,130],"other":[21],"valuable":[22],"assets.":[23,83],"A":[24],"lot":[25],"focus":[27],"has":[28,62],"been":[29,63],"done":[30],"managing":[32],"outside":[33],"attacks":[34],"data":[36,81],"organizations.":[38],"Including":[39],"Cyber-Physical":[40],"System":[41],"(CPS),":[42],"which":[43,120,155,160,207],"a":[45,123,166,184],"complex":[46],"mixture":[47],"physical":[49],"computer":[51],"components":[52],"typically":[53],"monitored":[54],"or":[55],"controlled":[56],"by":[57,182],"computer-based":[58],"algorithms.":[59],"However,":[60],"there":[61],"need":[64],"safeguard":[66],"insider's":[67],"behavior":[68],"breaching":[70],"the":[71,78,98,140,178],"expected":[72],"code":[73],"conduct":[75],"maintaining":[77],"critical":[79],"organizations'":[80],"technology":[85],"highly":[87],"reliable":[88],"it":[90,132],"cannot":[91],"be":[92,102],"easily":[93],"fabricated.":[94],"analysis":[96],"brainwave":[99],"signal":[100],"will":[101,121,208],"performed":[103],"using":[104,197,203],"an":[105],"advanced":[106],"deep":[107,204],"learning":[108,153,205],"algorithm":[109,206],"called":[110],"Long":[111],"Short":[112],"Term":[113],"Memory":[114],"Recurrent":[115],"Neural":[116],"Network":[117],"(LSTM-RNN)":[118],"classifier":[119],"remember":[122],"previous":[124],"mental":[125,211],"states":[126,212],"each":[128],"insider":[129,192],"compare":[131],"with":[133,150],"new":[134],"present":[135],"brain":[136,145],"state":[137],"classify":[139,209],"risk":[141,216],"level":[142],"associated.":[143],"wave":[146],"also":[148],"analysed":[149],"Adaptive":[151],"Machine":[152],"Algorithm":[154],"combines":[156],"several":[157],"weak":[158],"learners":[159],"decision":[162],"trees,":[163],"form":[165],"single":[167],"strong":[168],"learner.":[169],"In":[170],"this":[171],"study,":[172],"our":[173],"targets":[174],"increase":[177],"security":[179],"NCI":[181],"providing":[183],"significant":[185],"proof":[186],"concept":[188],"system":[189],"detect":[191],"threats":[193],"through":[194],"fitness":[195],"evaluation":[196],"EEG":[198],"signals":[199],"that":[200],"gets":[201],"analyzed":[202],"different":[210],"into":[213],"four":[214],"categories":[215],"matrix.":[217]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W3112485768","counts_by_year":[{"year":2024,"cited_by_count":2},{"year":2023,"cited_by_count":1},{"year":2021,"cited_by_count":1}],"updated_date":"2024-12-03T22:29:16.694270","created_date":"2020-12-21"}