{"id":"https://openalex.org/W3131215857","doi":"https://doi.org/10.1109/sc41405.2020.00090","title":"Speeding Up SpMV for Power-Law Graph Analytics by Enhancing Locality & Vectorization","display_name":"Speeding Up SpMV for Power-Law Graph Analytics by Enhancing Locality & Vectorization","publication_year":2020,"publication_date":"2020-11-01","ids":{"openalex":"https://openalex.org/W3131215857","doi":"https://doi.org/10.1109/sc41405.2020.00090","mag":"3131215857"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/sc41405.2020.00090","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5051612723","display_name":"\u015eerif Ye\u015fil","orcid":"https://orcid.org/0000-0002-7947-2451"},"institutions":[{"id":"https://openalex.org/I157725225","display_name":"University of Illinois Urbana-Champaign","ror":"https://ror.org/047426m28","country_code":"US","type":"education","lineage":["https://openalex.org/I157725225"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Serif Yesil","raw_affiliation_strings":["Dept. of Computer Science, University of Illinois at Urbana-Champaign"],"affiliations":[{"raw_affiliation_string":"Dept. of Computer Science, University of Illinois at Urbana-Champaign","institution_ids":["https://openalex.org/I157725225"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5041504562","display_name":"Azin Heidarshenas","orcid":null},"institutions":[{"id":"https://openalex.org/I157725225","display_name":"University of Illinois Urbana-Champaign","ror":"https://ror.org/047426m28","country_code":"US","type":"education","lineage":["https://openalex.org/I157725225"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Azin Heidarshenas","raw_affiliation_strings":["Dept. of Computer Science, University of Illinois at Urbana-Champaign"],"affiliations":[{"raw_affiliation_string":"Dept. of Computer Science, University of Illinois at Urbana-Champaign","institution_ids":["https://openalex.org/I157725225"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5101431627","display_name":"Adam Morrison","orcid":"https://orcid.org/0000-0002-5586-2615"},"institutions":[{"id":"https://openalex.org/I16391192","display_name":"Tel Aviv University","ror":"https://ror.org/04mhzgx49","country_code":"IL","type":"education","lineage":["https://openalex.org/I16391192"]}],"countries":["IL"],"is_corresponding":false,"raw_author_name":"Adam Morrison","raw_affiliation_strings":["Blavatnik School of Computer Science, Tel Aviv University"],"affiliations":[{"raw_affiliation_string":"Blavatnik School of Computer Science, Tel Aviv University","institution_ids":["https://openalex.org/I16391192"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5055909708","display_name":"Josep Torrellas","orcid":"https://orcid.org/0000-0003-2595-5228"},"institutions":[{"id":"https://openalex.org/I157725225","display_name":"University of Illinois Urbana-Champaign","ror":"https://ror.org/047426m28","country_code":"US","type":"education","lineage":["https://openalex.org/I157725225"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Josep Torrellas","raw_affiliation_strings":["Dept. of Computer Science, University of Illinois at Urbana-Champaign"],"affiliations":[{"raw_affiliation_string":"Dept. of Computer Science, University of Illinois at Urbana-Champaign","institution_ids":["https://openalex.org/I157725225"]}]}],"institution_assertions":[],"countries_distinct_count":2,"institutions_distinct_count":2,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":1.056,"has_fulltext":false,"cited_by_count":18,"citation_normalized_percentile":{"value":0.807357,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":91,"max":92},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T12292","display_name":"Graph Matching and Analysis Techniques","score":0.9997,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T12292","display_name":"Graph Matching and Analysis Techniques","score":0.9997,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11273","display_name":"Graph Neural Network Models and Applications","score":0.9981,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10829","display_name":"Networks on Chip in System-on-Chip Design","score":0.9945,"subfield":{"id":"https://openalex.org/subfields/1705","display_name":"Computer Networks and Communications"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/signal-processing-on-graphs","display_name":"Signal Processing on Graphs","score":0.572811},{"id":"https://openalex.org/keywords/graph-processing","display_name":"Graph Processing","score":0.560658},{"id":"https://openalex.org/keywords/power-optimization","display_name":"Power Optimization","score":0.55901},{"id":"https://openalex.org/keywords/graph-matching","display_name":"Graph Matching","score":0.556258},{"id":"https://openalex.org/keywords/graph-analytics","display_name":"Graph Analytics","score":0.553174}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.8436125},{"id":"https://openalex.org/C2779808786","wikidata":"https://www.wikidata.org/wiki/Q6664603","display_name":"Locality","level":2,"score":0.7286488},{"id":"https://openalex.org/C173608175","wikidata":"https://www.wikidata.org/wiki/Q232661","display_name":"Parallel computing","level":1,"score":0.71018505},{"id":"https://openalex.org/C56372850","wikidata":"https://www.wikidata.org/wiki/Q1050404","display_name":"Sparse matrix","level":3,"score":0.5024307},{"id":"https://openalex.org/C132525143","wikidata":"https://www.wikidata.org/wiki/Q141488","display_name":"Graph","level":2,"score":0.4309793},{"id":"https://openalex.org/C80444323","wikidata":"https://www.wikidata.org/wiki/Q2878974","display_name":"Theoretical computer science","level":1,"score":0.41571587},{"id":"https://openalex.org/C138885662","wikidata":"https://www.wikidata.org/wiki/Q5891","display_name":"Philosophy","level":0,"score":0.0},{"id":"https://openalex.org/C41895202","wikidata":"https://www.wikidata.org/wiki/Q8162","display_name":"Linguistics","level":1,"score":0.0},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C62520636","wikidata":"https://www.wikidata.org/wiki/Q944","display_name":"Quantum mechanics","level":1,"score":0.0},{"id":"https://openalex.org/C163716315","wikidata":"https://www.wikidata.org/wiki/Q901177","display_name":"Gaussian","level":2,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/sc41405.2020.00090","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"display_name":"No poverty","id":"https://metadata.un.org/sdg/1","score":0.44}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":49,"referenced_works":["https://openalex.org/W1557692423","https://openalex.org/W1783256592","https://openalex.org/W1807272711","https://openalex.org/W1835670156","https://openalex.org/W1981902599","https://openalex.org/W1985312666","https://openalex.org/W1987840949","https://openalex.org/W1994727615","https://openalex.org/W2000041758","https://openalex.org/W2009654791","https://openalex.org/W2025278624","https://openalex.org/W2034102265","https://openalex.org/W2035080386","https://openalex.org/W2066636486","https://openalex.org/W2080048189","https://openalex.org/W2082773934","https://openalex.org/W2101196063","https://openalex.org/W2104120668","https://openalex.org/W2108049363","https://openalex.org/W2130289795","https://openalex.org/W2138621811","https://openalex.org/W2141380216","https://openalex.org/W2142184646","https://openalex.org/W2150478767","https://openalex.org/W2167927436","https://openalex.org/W2262570173","https://openalex.org/W2270949707","https://openalex.org/W2289880787","https://openalex.org/W2298668594","https://openalex.org/W2411480360","https://openalex.org/W2415007423","https://openalex.org/W2444127451","https://openalex.org/W2484446135","https://openalex.org/W2511364592","https://openalex.org/W2730999914","https://openalex.org/W2732233446","https://openalex.org/W2732588537","https://openalex.org/W2755088640","https://openalex.org/W2788981395","https://openalex.org/W2791012218","https://openalex.org/W2904687209","https://openalex.org/W2904906706","https://openalex.org/W2914631005","https://openalex.org/W2962865652","https://openalex.org/W2976763854","https://openalex.org/W3104065274","https://openalex.org/W3142022753","https://openalex.org/W4243205343","https://openalex.org/W4256588782"],"related_works":["https://openalex.org/W4234091740","https://openalex.org/W4213350282","https://openalex.org/W3202552726","https://openalex.org/W2886568922","https://openalex.org/W2583128298","https://openalex.org/W2369125128","https://openalex.org/W2279642117","https://openalex.org/W2230171082","https://openalex.org/W1556451512","https://openalex.org/W1555349535"],"abstract_inverted_index":{"Graph":[0,15],"analytics":[1],"applications":[2],"often":[3,18],"target":[4],"large-scale":[5,39],"web":[6],"and":[7,60,116,133,149,174],"social":[8],"networks,":[9],"which":[10,146],"are":[11,63,71],"typically":[12],"power-law":[13,40,91,111],"graphs.":[14],"algorithms":[16],"can":[17],"be":[19],"recast":[20],"as":[21],"generalized":[22],"Sparse":[23,82],"Matrix-Vector":[24],"multiplication":[25],"(SpMV)":[26],"operations,":[27],"making":[28],"SpMV":[29,37,58,85],"optimization":[30],"important":[31],"for":[32,90,120],"graph":[33],"analytics.":[34],"However,":[35],"executing":[36],"on":[38,66,93,169,199],"graphs":[41,92,168],"results":[42],"in":[43,142],"highly":[44],"irregular":[45],"memory":[46,122,205],"access":[47,123],"patterns":[48],"with":[49,166,201],"poor":[50],"cache":[51],"utilization.":[52],"Worse,":[53],"we":[54,97],"find":[55,175],"that":[56,107,176],"existing":[57],"locality":[59,115],"vectorization":[61,119],"optimizations":[62],"largely":[64],"ineffective":[65],"modern":[67,94],"out-of-order":[68],"(OOO)":[69],"processors-they":[70],"not":[72],"faster":[73,179],"(or":[74],"only":[75,202],"marginally":[76],"so)":[77],"than":[78,180],"the":[79,127,159,192],"standard":[80,160],"Compressed":[81],"Row":[83],"(CSR)":[84],"implementation.":[86],"To":[87],"improve":[88],"performance":[89],"OOO":[95],"processors,":[96],"propose":[98],"Locality-Aware":[99],"Vectorization":[100],"(LAV).":[101],"LAV":[102,125,165,190],"is":[103,140,147,156,178],"a":[104,109,131,134,143,203],"new":[105,144],"approach":[106],"leverages":[108],"graph's":[110],"nature":[112],"to":[113],"extract":[114],"enable":[117],"effective":[118],"SpMV-like":[121],"patterns.":[124],"splits":[126],"input":[128],"matrix":[129],"into":[130],"dense":[132,138],"sparse":[135,154],"portion.":[136],"The":[137,153],"portion":[139,155],"stored":[141],"representation,":[145],"vectorization-friendly":[148],"exploits":[150],"data":[151],"locality.":[152],"processed":[157],"using":[158],"CSR":[161,181],"algorithm.":[162],"We":[163],"evaluate":[164],"several":[167],"an":[170,186],"Intel":[171],"Skylake-SP":[172],"processor,":[173],"it":[177],"(and":[182],"prior":[183],"approaches)":[184],"by":[185,197],"average":[187],"of":[188,194],"1.5x.":[189],"reduces":[191],"number":[193],"DRAM":[195],"accesses":[196],"35%":[198],"average,":[200],"3.3%":[204],"overhead.":[206]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W3131215857","counts_by_year":[{"year":2024,"cited_by_count":3},{"year":2023,"cited_by_count":4},{"year":2022,"cited_by_count":7},{"year":2021,"cited_by_count":3}],"updated_date":"2024-12-04T16:37:05.570925","created_date":"2021-03-01"}