{"id":"https://openalex.org/W2106264387","doi":"https://doi.org/10.1109/sbrn.2008.30","title":"Using Support Vector Machines to Predict the Performance of MLP Neural Networks","display_name":"Using Support Vector Machines to Predict the Performance of MLP Neural Networks","publication_year":2008,"publication_date":"2008-10-01","ids":{"openalex":"https://openalex.org/W2106264387","doi":"https://doi.org/10.1109/sbrn.2008.30","mag":"2106264387"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/sbrn.2008.30","pdf_url":null,"source":{"id":"https://openalex.org/S4210214732","display_name":"Proceedings - Brazilian Symposium on Neural Networks/Proceedings of the ... Brazilian Symposium on Neural Networks","issn_l":"1522-4899","issn":["1522-4899","2375-0235"],"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":true,"host_organization":"https://openalex.org/P4310319808","host_organization_name":"Institute of Electrical and Electronics Engineers","host_organization_lineage":["https://openalex.org/P4310319808"],"host_organization_lineage_names":["Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5083998049","display_name":"Ricardo B. C. Prud\u00eancio","orcid":"https://orcid.org/0000-0001-7084-1233"},"institutions":[{"id":"https://openalex.org/I71437568","display_name":"Universidade de Pernambuco","ror":"https://ror.org/00gtcbp88","country_code":"BR","type":"funder","lineage":["https://openalex.org/I71437568"]}],"countries":["BR"],"is_corresponding":false,"raw_author_name":"Ricardo B.C. Prud\u00eancio","raw_affiliation_strings":["Center of Inf., Fed. Univ. of Pernambuco, Recife"],"affiliations":[{"raw_affiliation_string":"Center of Inf., Fed. Univ. of Pernambuco, Recife","institution_ids":["https://openalex.org/I71437568"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5007793860","display_name":"Silvio B. Guerra","orcid":null},"institutions":[{"id":"https://openalex.org/I71437568","display_name":"Universidade de Pernambuco","ror":"https://ror.org/00gtcbp88","country_code":"BR","type":"funder","lineage":["https://openalex.org/I71437568"]}],"countries":["BR"],"is_corresponding":false,"raw_author_name":"Silvio B. Guerra","raw_affiliation_strings":["Center of Inf., Fed. Univ. of Pernambuco, Recife"],"affiliations":[{"raw_affiliation_string":"Center of Inf., Fed. Univ. of Pernambuco, Recife","institution_ids":["https://openalex.org/I71437568"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5025550530","display_name":"Teresa B. Ludermir","orcid":"https://orcid.org/0000-0002-8980-6742"},"institutions":[{"id":"https://openalex.org/I71437568","display_name":"Universidade de Pernambuco","ror":"https://ror.org/00gtcbp88","country_code":"BR","type":"funder","lineage":["https://openalex.org/I71437568"]}],"countries":["BR"],"is_corresponding":false,"raw_author_name":"Teresa B. Ludermir","raw_affiliation_strings":["Center of Inf., Fed. Univ. of Pernambuco, Recife"],"affiliations":[{"raw_affiliation_string":"Center of Inf., Fed. Univ. of Pernambuco, Recife","institution_ids":["https://openalex.org/I71437568"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.42,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":4,"citation_normalized_percentile":{"value":0.771216,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":76,"max":78},"biblio":{"volume":null,"issue":null,"first_page":"201","last_page":"206"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T12535","display_name":"Machine Learning and Data Classification","score":0.9977,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T12535","display_name":"Machine Learning and Data Classification","score":0.9977,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10320","display_name":"Neural Networks and Applications","score":0.9911,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10057","display_name":"Face and Expression Recognition","score":0.9808,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/benchmark","display_name":"Benchmark (surveying)","score":0.6701118},{"id":"https://openalex.org/keywords/perceptron","display_name":"Perceptron","score":0.6226283},{"id":"https://openalex.org/keywords/kernel","display_name":"Kernel (algebra)","score":0.5803711},{"id":"https://openalex.org/keywords/multilayer-perceptron","display_name":"Multilayer perceptron","score":0.56720304}],"concepts":[{"id":"https://openalex.org/C12267149","wikidata":"https://www.wikidata.org/wiki/Q282453","display_name":"Support vector machine","level":2,"score":0.82501566},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.7734958},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.7381087},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.6734153},{"id":"https://openalex.org/C185798385","wikidata":"https://www.wikidata.org/wiki/Q1161707","display_name":"Benchmark (surveying)","level":2,"score":0.6701118},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.6367966},{"id":"https://openalex.org/C60908668","wikidata":"https://www.wikidata.org/wiki/Q690207","display_name":"Perceptron","level":3,"score":0.6226283},{"id":"https://openalex.org/C74193536","wikidata":"https://www.wikidata.org/wiki/Q574844","display_name":"Kernel (algebra)","level":2,"score":0.5803711},{"id":"https://openalex.org/C179717631","wikidata":"https://www.wikidata.org/wiki/Q2991667","display_name":"Multilayer perceptron","level":3,"score":0.56720304},{"id":"https://openalex.org/C177264268","wikidata":"https://www.wikidata.org/wiki/Q1514741","display_name":"Set (abstract data type)","level":2,"score":0.46127084},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.3759964},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.11504528},{"id":"https://openalex.org/C13280743","wikidata":"https://www.wikidata.org/wiki/Q131089","display_name":"Geodesy","level":1,"score":0.0},{"id":"https://openalex.org/C114614502","wikidata":"https://www.wikidata.org/wiki/Q76592","display_name":"Combinatorics","level":1,"score":0.0},{"id":"https://openalex.org/C199360897","wikidata":"https://www.wikidata.org/wiki/Q9143","display_name":"Programming language","level":1,"score":0.0},{"id":"https://openalex.org/C205649164","wikidata":"https://www.wikidata.org/wiki/Q1071","display_name":"Geography","level":0,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/sbrn.2008.30","pdf_url":null,"source":{"id":"https://openalex.org/S4210214732","display_name":"Proceedings - Brazilian Symposium on Neural Networks/Proceedings of the ... Brazilian Symposium on Neural Networks","issn_l":"1522-4899","issn":["1522-4899","2375-0235"],"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":true,"host_organization":"https://openalex.org/P4310319808","host_organization_name":"Institute of Electrical and Electronics Engineers","host_organization_lineage":["https://openalex.org/P4310319808"],"host_organization_lineage_names":["Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":23,"referenced_works":["https://openalex.org/W1494580925","https://openalex.org/W1498436455","https://openalex.org/W1539739406","https://openalex.org/W1558866804","https://openalex.org/W1758907577","https://openalex.org/W176885764","https://openalex.org/W1964357740","https://openalex.org/W1985789779","https://openalex.org/W1989048657","https://openalex.org/W2037322594","https://openalex.org/W2108626634","https://openalex.org/W2124158580","https://openalex.org/W2132213912","https://openalex.org/W2140494000","https://openalex.org/W2141408223","https://openalex.org/W2147169507","https://openalex.org/W2158001550","https://openalex.org/W2167467747","https://openalex.org/W2168031673","https://openalex.org/W2256578114","https://openalex.org/W2626984672","https://openalex.org/W4244238212","https://openalex.org/W4285719527"],"related_works":["https://openalex.org/W89844371","https://openalex.org/W4387048144","https://openalex.org/W4286643620","https://openalex.org/W2523437662","https://openalex.org/W2492135063","https://openalex.org/W2362514456","https://openalex.org/W2136232598","https://openalex.org/W2085842814","https://openalex.org/W2076543106","https://openalex.org/W2019891950"],"abstract_inverted_index":{"In":[0],"this":[1],"work,":[2],"we":[3],"investigated":[4],"the":[5,14,23,50,69,76],"use":[6],"of":[7,16,22,29,52,63],"Support":[8],"Vector":[9],"Machines":[10],"(SVM)":[11],"to":[12,48,80],"predict":[13,49],"performance":[15,51],"learning":[17,24,65],"algorithms":[18,82],"based":[19],"on":[20,60],"features":[21],"problems,":[25],"in":[26,34,38,74,84],"a":[27,35,61],"kind":[28],"Meta-Learning.":[30],"Experiments":[31],"were":[32,46],"performed":[33],"case":[36],"study":[37],"which":[39],"SVM":[40],"regressors":[41],"with":[42],"different":[43],"kernel":[44],"functions":[45],"used":[47],"Multi-Layer":[53],"Perceptron":[54],"(MLP)":[55],"networks.":[56],"The":[57],"results":[58,73],"obtained":[59,71],"set":[62],"50":[64],"problems":[66],"revealed":[67],"that":[68],"SVMs":[70],"better":[72],"predicting":[75],"MLP":[77],"performance,when":[78],"compared":[79],"benchmark":[81],"applied":[83],"previous":[85],"work.":[86]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2106264387","counts_by_year":[{"year":2024,"cited_by_count":1},{"year":2023,"cited_by_count":1},{"year":2013,"cited_by_count":1}],"updated_date":"2025-03-18T23:16:56.369265","created_date":"2016-06-24"}