{"id":"https://openalex.org/W1551432711","doi":"https://doi.org/10.1109/sas.2015.7133646","title":"Comparison of different classifiers in movement recognition using WSN-based wrist-mounted sensors","display_name":"Comparison of different classifiers in movement recognition using WSN-based wrist-mounted sensors","publication_year":2015,"publication_date":"2015-04-01","ids":{"openalex":"https://openalex.org/W1551432711","doi":"https://doi.org/10.1109/sas.2015.7133646","mag":"1551432711"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/sas.2015.7133646","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5057735997","display_name":"Peter \u0160ar\u010devi\u0107","orcid":"https://orcid.org/0000-0003-4050-8231"},"institutions":[{"id":"https://openalex.org/I227486990","display_name":"University of Szeged","ror":"https://ror.org/01pnej532","country_code":"HU","type":"funder","lineage":["https://openalex.org/I227486990"]}],"countries":["HU"],"is_corresponding":false,"raw_author_name":"Peter Sarcevic","raw_affiliation_strings":["Department of Technical Informatics, University of Szeged, Szeged,#N#Hungary"],"affiliations":[{"raw_affiliation_string":"Department of Technical Informatics, University of Szeged, Szeged,#N#Hungary","institution_ids":["https://openalex.org/I227486990"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5008765616","display_name":"Zolt\u00e1n Kincses","orcid":"https://orcid.org/0000-0002-7130-9510"},"institutions":[{"id":"https://openalex.org/I227486990","display_name":"University of Szeged","ror":"https://ror.org/01pnej532","country_code":"HU","type":"funder","lineage":["https://openalex.org/I227486990"]}],"countries":["HU"],"is_corresponding":false,"raw_author_name":"Zoltan Kincses","raw_affiliation_strings":["Department of Technical Informatics, University of Szeged, Szeged,#N#Hungary"],"affiliations":[{"raw_affiliation_string":"Department of Technical Informatics, University of Szeged, Szeged,#N#Hungary","institution_ids":["https://openalex.org/I227486990"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5036999490","display_name":"Szilveszter Pletl","orcid":null},"institutions":[{"id":"https://openalex.org/I227486990","display_name":"University of Szeged","ror":"https://ror.org/01pnej532","country_code":"HU","type":"funder","lineage":["https://openalex.org/I227486990"]}],"countries":["HU"],"is_corresponding":false,"raw_author_name":"Szilveszter Pletl","raw_affiliation_strings":["Department of Technical Informatics, University of Szeged, Szeged,#N#Hungary"],"affiliations":[{"raw_affiliation_string":"Department of Technical Informatics, University of Szeged, Szeged,#N#Hungary","institution_ids":["https://openalex.org/I227486990"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.808,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":10,"citation_normalized_percentile":{"value":0.657877,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":86,"max":87},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10444","display_name":"Context-Aware Activity Recognition Systems","score":0.9995,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10444","display_name":"Context-Aware Activity Recognition Systems","score":0.9995,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11196","display_name":"Non-Invasive Vital Sign Monitoring","score":0.9945,"subfield":{"id":"https://openalex.org/subfields/2204","display_name":"Biomedical Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11398","display_name":"Hand Gesture Recognition Systems","score":0.9927,"subfield":{"id":"https://openalex.org/subfields/1709","display_name":"Human-Computer Interaction"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/multilayer-perceptron","display_name":"Multilayer perceptron","score":0.5408099},{"id":"https://openalex.org/keywords/sliding-window-protocol","display_name":"Sliding window protocol","score":0.52077574},{"id":"https://openalex.org/keywords/activity-recognition","display_name":"Activity Recognition","score":0.45880997}],"concepts":[{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.7246922},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.6927258},{"id":"https://openalex.org/C89805583","wikidata":"https://www.wikidata.org/wiki/Q192940","display_name":"Accelerometer","level":2,"score":0.67513573},{"id":"https://openalex.org/C69738355","wikidata":"https://www.wikidata.org/wiki/Q1228929","display_name":"Linear discriminant analysis","level":2,"score":0.6456293},{"id":"https://openalex.org/C12267149","wikidata":"https://www.wikidata.org/wiki/Q282453","display_name":"Support vector machine","level":2,"score":0.6264195},{"id":"https://openalex.org/C158488048","wikidata":"https://www.wikidata.org/wiki/Q483400","display_name":"Gyroscope","level":2,"score":0.61109006},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.5699929},{"id":"https://openalex.org/C52001869","wikidata":"https://www.wikidata.org/wiki/Q812530","display_name":"Naive Bayes classifier","level":3,"score":0.55276227},{"id":"https://openalex.org/C179717631","wikidata":"https://www.wikidata.org/wiki/Q2991667","display_name":"Multilayer perceptron","level":3,"score":0.5408099},{"id":"https://openalex.org/C102392041","wikidata":"https://www.wikidata.org/wiki/Q592860","display_name":"Sliding window protocol","level":3,"score":0.52077574},{"id":"https://openalex.org/C24590314","wikidata":"https://www.wikidata.org/wiki/Q336038","display_name":"Wireless sensor network","level":2,"score":0.51576424},{"id":"https://openalex.org/C52622490","wikidata":"https://www.wikidata.org/wiki/Q1026626","display_name":"Feature extraction","level":2,"score":0.48867562},{"id":"https://openalex.org/C95623464","wikidata":"https://www.wikidata.org/wiki/Q1096149","display_name":"Classifier (UML)","level":2,"score":0.46122557},{"id":"https://openalex.org/C121687571","wikidata":"https://www.wikidata.org/wiki/Q4677630","display_name":"Activity recognition","level":2,"score":0.45880997},{"id":"https://openalex.org/C31972630","wikidata":"https://www.wikidata.org/wiki/Q844240","display_name":"Computer vision","level":1,"score":0.37453532},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.3518981},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.323887},{"id":"https://openalex.org/C127413603","wikidata":"https://www.wikidata.org/wiki/Q11023","display_name":"Engineering","level":0,"score":0.14969745},{"id":"https://openalex.org/C2778751112","wikidata":"https://www.wikidata.org/wiki/Q835016","display_name":"Window (computing)","level":2,"score":0.14338472},{"id":"https://openalex.org/C31258907","wikidata":"https://www.wikidata.org/wiki/Q1301371","display_name":"Computer network","level":1,"score":0.0},{"id":"https://openalex.org/C146978453","wikidata":"https://www.wikidata.org/wiki/Q3798668","display_name":"Aerospace engineering","level":1,"score":0.0},{"id":"https://openalex.org/C111919701","wikidata":"https://www.wikidata.org/wiki/Q9135","display_name":"Operating system","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/sas.2015.7133646","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"score":0.53,"id":"https://metadata.un.org/sdg/10","display_name":"Reduced inequalities"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":14,"referenced_works":["https://openalex.org/W1594334877","https://openalex.org/W1967843818","https://openalex.org/W1968194699","https://openalex.org/W2002116021","https://openalex.org/W2026982506","https://openalex.org/W2032800032","https://openalex.org/W2051050593","https://openalex.org/W2076552240","https://openalex.org/W2098574065","https://openalex.org/W2110176871","https://openalex.org/W2112598535","https://openalex.org/W2134262590","https://openalex.org/W2148048965","https://openalex.org/W2291096763"],"related_works":["https://openalex.org/W4387451989","https://openalex.org/W3176084888","https://openalex.org/W3036689711","https://openalex.org/W2983384859","https://openalex.org/W2761234876","https://openalex.org/W2532412374","https://openalex.org/W2358715846","https://openalex.org/W23275807","https://openalex.org/W2063137106","https://openalex.org/W1889129279"],"abstract_inverted_index":{"The":[0,49,66,168,180],"analysis":[1,16],"of":[2,10,17,28,46,113,150],"human":[3],"movement":[4,36,94,112],"is":[5,31,171],"a":[6,34,74,77,81],"widely":[7],"studied":[8],"field":[9],"health":[11],"applications,":[12],"such":[13],"as":[14],"telerehabilitation,":[15],"daily":[18],"activities,":[19],"and":[20,80,108,134,147,157,162,197],"emergency":[21,47],"detection.":[22],"In":[23],"this":[24],"paper,":[25],"the":[26,44,111,114,129,151,160,163,174,184,188,193,198],"comparison":[27],"different":[29,123,137],"classifiers":[30,154,182],"presented":[32],"for":[33,43,86,145,148],"new":[35],"recognition":[37],"system,":[38],"which":[39,142],"can":[40],"be":[41],"used":[42,130,144],"detection":[45],"situations.":[48],"system":[50],"uses":[51],"9-degree-of-freedom":[52],"(9DOF)":[53],"sensor":[54,68],"boards":[55,69],"that":[56],"are":[57,70],"attached":[58],"to":[59,100],"wrist-mounted":[60],"Wireless":[61],"Sensor":[62],"Network":[63],"(WSN)":[64],"motes.":[65],"9DOF":[67],"built":[71],"up":[72],"from":[73,90],"tri-axial":[75,78,82],"accelerometer,":[76],"gyroscope,":[79],"magnetometer.":[83],"Measurement":[84],"data":[85,138,166],"classification":[87],"were":[88,96,120,140,143,155,183],"collected":[89],"multiple":[91],"subjects.":[92],"Eleven":[93],"classes":[95],"constructed":[97],"in":[98,105,122],"order":[99],"recognize":[101],"specific":[102],"arm":[103],"movements":[104],"stationary":[106],"positions":[107],"also":[109],"during":[110],"body.":[115],"Various":[116],"time-domain":[117],"features":[118],"(TDF)":[119],"calculated":[121],"processing":[124],"window":[125,131],"widths.":[126],"Depending":[127],"on":[128],"size,":[132],"sensors":[133],"TDFs,":[135],"48":[136],"sets":[139],"constructed,":[141],"training":[146],"validating":[149],"system.":[152],"Different":[153],"tested":[156,181],"compared":[158],"using":[159,173],"original":[161],"dimensionally":[164],"reduced":[165],"sets.":[167],"dimension":[169],"reduction":[170],"performed":[172],"Linear":[175],"Discriminant":[176],"Analysis":[177],"(LDA)":[178],"method.":[179],"minimum":[185],"distance":[186],"classifier,":[187],"MultiLayer":[189],"Perceptron":[190],"(MLP)":[191],"network,":[192],"naive":[194],"Bayes":[195],"classifier":[196],"Support":[199],"Vector":[200],"Machine":[201],"(SVM).":[202]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W1551432711","counts_by_year":[{"year":2023,"cited_by_count":1},{"year":2022,"cited_by_count":1},{"year":2018,"cited_by_count":1},{"year":2017,"cited_by_count":6},{"year":2016,"cited_by_count":1}],"updated_date":"2025-03-23T03:27:13.712226","created_date":"2016-06-24"}