{"id":"https://openalex.org/W4210474005","doi":"https://doi.org/10.1109/safeprocess52771.2021.9693603","title":"Nonlinear PLS with Neural Component Analysis Structure","display_name":"Nonlinear PLS with Neural Component Analysis Structure","publication_year":2021,"publication_date":"2021-12-17","ids":{"openalex":"https://openalex.org/W4210474005","doi":"https://doi.org/10.1109/safeprocess52771.2021.9693603"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/safeprocess52771.2021.9693603","pdf_url":null,"source":{"id":"https://openalex.org/S4363605570","display_name":"2021 CAA Symposium on Fault Detection, Supervision, and Safety for Technical Processes (SAFEPROCESS)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5100319195","display_name":"Yonghui Wang","orcid":"https://orcid.org/0000-0001-9995-5904"},"institutions":[{"id":"https://openalex.org/I4210152380","display_name":"Shenzhen Technology University","ror":"https://ror.org/04qzpec27","country_code":"CN","type":"education","lineage":["https://openalex.org/I4210152380"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Wang Yonghui","raw_affiliation_strings":["College of Urban Transportation and Logistics, Shenzhen Technology University, Shenzhen, China"],"affiliations":[{"raw_affiliation_string":"College of Urban Transportation and Logistics, Shenzhen Technology University, Shenzhen, China","institution_ids":["https://openalex.org/I4210152380"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5011900340","display_name":"Zhijiang Lou","orcid":"https://orcid.org/0000-0003-3912-904X"},"institutions":[{"id":"https://openalex.org/I182722699","display_name":"Shenzhen Polytechnic","ror":"https://ror.org/00d2w9g53","country_code":"CN","type":"education","lineage":["https://openalex.org/I182722699"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Lou Zhijiang","raw_affiliation_strings":["Shenzhen Polytechnic, Institute of Intelligence Science and Engineering, Shenzhen, China"],"affiliations":[{"raw_affiliation_string":"Shenzhen Polytechnic, Institute of Intelligence Science and Engineering, Shenzhen, China","institution_ids":["https://openalex.org/I182722699"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":2,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.0,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":57},"biblio":{"volume":null,"issue":null,"first_page":"1","last_page":"4"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10876","display_name":"Fault Detection and Control Systems","score":0.9998,"subfield":{"id":"https://openalex.org/subfields/2207","display_name":"Control and Systems Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10876","display_name":"Fault Detection and Control Systems","score":0.9998,"subfield":{"id":"https://openalex.org/subfields/2207","display_name":"Control and Systems Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12282","display_name":"Mineral Processing and Grinding","score":0.9928,"subfield":{"id":"https://openalex.org/subfields/2210","display_name":"Mechanical Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10640","display_name":"Spectroscopy and Chemometric Analyses","score":0.9779,"subfield":{"id":"https://openalex.org/subfields/1602","display_name":"Analytical Chemistry"},"field":{"id":"https://openalex.org/fields/16","display_name":"Chemistry"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/component-analysis","display_name":"Component analysis","score":0.5260006},{"id":"https://openalex.org/keywords/component","display_name":"Component (thermodynamics)","score":0.49930596},{"id":"https://openalex.org/keywords/principal-component-regression","display_name":"Principal component regression","score":0.4209859}],"concepts":[{"id":"https://openalex.org/C22354355","wikidata":"https://www.wikidata.org/wiki/Q422009","display_name":"Partial least squares regression","level":2,"score":0.8492183},{"id":"https://openalex.org/C27438332","wikidata":"https://www.wikidata.org/wiki/Q2873","display_name":"Principal component analysis","level":2,"score":0.844008},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.60661906},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.5852685},{"id":"https://openalex.org/C158622935","wikidata":"https://www.wikidata.org/wiki/Q660848","display_name":"Nonlinear system","level":2,"score":0.5611873},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.5391038},{"id":"https://openalex.org/C98045186","wikidata":"https://www.wikidata.org/wiki/Q205663","display_name":"Process (computing)","level":2,"score":0.5271019},{"id":"https://openalex.org/C2780692498","wikidata":"https://www.wikidata.org/wiki/Q16950721","display_name":"Component analysis","level":2,"score":0.5260006},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.5223723},{"id":"https://openalex.org/C196083921","wikidata":"https://www.wikidata.org/wiki/Q7915758","display_name":"Variance (accounting)","level":2,"score":0.50756896},{"id":"https://openalex.org/C168167062","wikidata":"https://www.wikidata.org/wiki/Q1117970","display_name":"Component (thermodynamics)","level":2,"score":0.49930596},{"id":"https://openalex.org/C52622490","wikidata":"https://www.wikidata.org/wiki/Q1026626","display_name":"Feature extraction","level":2,"score":0.48886007},{"id":"https://openalex.org/C2780092901","wikidata":"https://www.wikidata.org/wiki/Q3433612","display_name":"Correlation coefficient","level":2,"score":0.45336396},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.431722},{"id":"https://openalex.org/C74887250","wikidata":"https://www.wikidata.org/wiki/Q3455892","display_name":"Principal component regression","level":3,"score":0.4209859},{"id":"https://openalex.org/C186060115","wikidata":"https://www.wikidata.org/wiki/Q30336093","display_name":"Biological system","level":1,"score":0.39295727},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.24691066},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C121955636","wikidata":"https://www.wikidata.org/wiki/Q4116214","display_name":"Accounting","level":1,"score":0.0},{"id":"https://openalex.org/C62520636","wikidata":"https://www.wikidata.org/wiki/Q944","display_name":"Quantum mechanics","level":1,"score":0.0},{"id":"https://openalex.org/C86803240","wikidata":"https://www.wikidata.org/wiki/Q420","display_name":"Biology","level":0,"score":0.0},{"id":"https://openalex.org/C144133560","wikidata":"https://www.wikidata.org/wiki/Q4830453","display_name":"Business","level":0,"score":0.0},{"id":"https://openalex.org/C97355855","wikidata":"https://www.wikidata.org/wiki/Q11473","display_name":"Thermodynamics","level":1,"score":0.0},{"id":"https://openalex.org/C111919701","wikidata":"https://www.wikidata.org/wiki/Q9135","display_name":"Operating system","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/safeprocess52771.2021.9693603","pdf_url":null,"source":{"id":"https://openalex.org/S4363605570","display_name":"2021 CAA Symposium on Fault Detection, Supervision, and Safety for Technical Processes (SAFEPROCESS)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"id":"https://metadata.un.org/sdg/9","score":0.61,"display_name":"Industry, innovation and infrastructure"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":8,"referenced_works":["https://openalex.org/W1550181012","https://openalex.org/W2052828853","https://openalex.org/W2079577972","https://openalex.org/W2200355885","https://openalex.org/W2799989355","https://openalex.org/W2950522612","https://openalex.org/W3080565888","https://openalex.org/W3154504804"],"related_works":["https://openalex.org/W4396824786","https://openalex.org/W4229916583","https://openalex.org/W2981666789","https://openalex.org/W2770989956","https://openalex.org/W2468593193","https://openalex.org/W2124794399","https://openalex.org/W2042294628","https://openalex.org/W2040357294","https://openalex.org/W2013293448","https://openalex.org/W1966115210"],"abstract_inverted_index":{"To":[0],"handle":[1],"the":[2,6,27,34,42,48,56,60],"nonlinear":[3],"feature":[4],"in":[5],"industry":[7],"process,":[8],"this":[9],"paper":[10],"combines":[11],"partial":[12],"least":[13],"squares":[14],"(PLS)":[15],"and":[16,63],"neural":[17],"component":[18],"analysis":[19],"(NCA),":[20],"named":[21],"as":[22],"NCA-PLS.":[23],"Different":[24],"from":[25,59],"NCA,":[26],"principal":[28],"components":[29,58],"are":[30],"selected":[31],"based":[32],"on":[33],"correlation":[35],"coefficient":[36],"with":[37],"KPI":[38],"variables":[39],"rather":[40],"than":[41],"variance.":[43],"As":[44],"such,":[45],"by":[46],"redesigning":[47],"PCs":[49],"extraction":[50],"mechanism,":[51],"NCA-PLS":[52],"can":[53],"successfully":[54],"extract":[55],"KPI-related":[57],"process":[61,67],"data":[62],"use":[64],"them":[65],"for":[66],"monitoring.":[68]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4210474005","counts_by_year":[],"updated_date":"2024-12-10T11:09:03.265028","created_date":"2022-02-08"}