{"id":"https://openalex.org/W3091812678","doi":"https://doi.org/10.1109/safeprocess45799.2019.9213434","title":"Fault Prediction Method of the On-board Equipment of Train Control System Based on Grey-ENN","display_name":"Fault Prediction Method of the On-board Equipment of Train Control System Based on Grey-ENN","publication_year":2019,"publication_date":"2019-07-01","ids":{"openalex":"https://openalex.org/W3091812678","doi":"https://doi.org/10.1109/safeprocess45799.2019.9213434","mag":"3091812678"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/safeprocess45799.2019.9213434","pdf_url":null,"source":{"id":"https://openalex.org/S4363605570","display_name":"2021 CAA Symposium on Fault Detection, Supervision, and Safety for Technical Processes (SAFEPROCESS)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5113400596","display_name":"Yueyue Meng","orcid":null},"institutions":[{"id":"https://openalex.org/I21193070","display_name":"Beijing Jiaotong University","ror":"https://ror.org/01yj56c84","country_code":"CN","type":"education","lineage":["https://openalex.org/I21193070"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Yueyue Meng","raw_affiliation_strings":["School of Electronic and Information Engineering, Beijing Jiaotong University, Beijing, P. R. China"],"affiliations":[{"raw_affiliation_string":"School of Electronic and Information Engineering, Beijing Jiaotong University, Beijing, P. R. China","institution_ids":["https://openalex.org/I21193070"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5002672308","display_name":"Wei Shangguan","orcid":"https://orcid.org/0000-0003-2901-0782"},"institutions":[],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Wei ShangGuan","raw_affiliation_strings":["Beijing Engineering Research Center of EMC and GNSS Technology for Rail Transportation, Beijing, P. R. China"],"affiliations":[{"raw_affiliation_string":"Beijing Engineering Research Center of EMC and GNSS Technology for Rail Transportation, Beijing, P. R. China","institution_ids":[]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100636115","display_name":"Baigen Cai","orcid":"https://orcid.org/0000-0002-6440-005X"},"institutions":[],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Baigen Cai","raw_affiliation_strings":["Beijing Engineering Research Center of EMC and GNSS Technology for Rail Transportation, Beijing, P. R. China"],"affiliations":[{"raw_affiliation_string":"Beijing Engineering Research Center of EMC and GNSS Technology for Rail Transportation, Beijing, P. R. China","institution_ids":[]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5045486164","display_name":"Junzheng Zhang","orcid":"https://orcid.org/0000-0002-0088-151X"},"institutions":[{"id":"https://openalex.org/I21193070","display_name":"Beijing Jiaotong University","ror":"https://ror.org/01yj56c84","country_code":"CN","type":"education","lineage":["https://openalex.org/I21193070"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Junzheng Zhang","raw_affiliation_strings":["School of Electronic and Information Engineering, Beijing Jiaotong University, Beijing, P. R. China"],"affiliations":[{"raw_affiliation_string":"School of Electronic and Information Engineering, Beijing Jiaotong University, Beijing, P. R. China","institution_ids":["https://openalex.org/I21193070"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.0,"has_fulltext":false,"cited_by_count":1,"citation_normalized_percentile":{"value":0.329799,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":61,"max":70},"biblio":{"volume":null,"issue":null,"first_page":"944","last_page":"949"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11344","display_name":"Traffic Prediction and Management Techniques","score":0.991,"subfield":{"id":"https://openalex.org/subfields/2215","display_name":"Building and Construction"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11344","display_name":"Traffic Prediction and Management Techniques","score":0.991,"subfield":{"id":"https://openalex.org/subfields/2215","display_name":"Building and Construction"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T14276","display_name":"Power Systems and Technologies","score":0.9843,"subfield":{"id":"https://openalex.org/subfields/2208","display_name":"Electrical and Electronic Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T13832","display_name":"Advanced Decision-Making Techniques","score":0.9834,"subfield":{"id":"https://openalex.org/subfields/1710","display_name":"Information Systems"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/gsm","display_name":"GSM","score":0.4287124}],"concepts":[{"id":"https://openalex.org/C12267149","wikidata":"https://www.wikidata.org/wiki/Q282453","display_name":"Support vector machine","level":2,"score":0.68505573},{"id":"https://openalex.org/C175551986","wikidata":"https://www.wikidata.org/wiki/Q47089","display_name":"Fault (geology)","level":2,"score":0.6792169},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.5833315},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.50697875},{"id":"https://openalex.org/C200601418","wikidata":"https://www.wikidata.org/wiki/Q2193887","display_name":"Reliability engineering","level":1,"score":0.4347465},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.42898312},{"id":"https://openalex.org/C59201141","wikidata":"https://www.wikidata.org/wiki/Q46904","display_name":"GSM","level":2,"score":0.4287124},{"id":"https://openalex.org/C127413603","wikidata":"https://www.wikidata.org/wiki/Q11023","display_name":"Engineering","level":0,"score":0.42574745},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.39753863},{"id":"https://openalex.org/C165205528","wikidata":"https://www.wikidata.org/wiki/Q83371","display_name":"Seismology","level":1,"score":0.0},{"id":"https://openalex.org/C127313418","wikidata":"https://www.wikidata.org/wiki/Q1069","display_name":"Geology","level":0,"score":0.0},{"id":"https://openalex.org/C76155785","wikidata":"https://www.wikidata.org/wiki/Q418","display_name":"Telecommunications","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/safeprocess45799.2019.9213434","pdf_url":null,"source":{"id":"https://openalex.org/S4363605570","display_name":"2021 CAA Symposium on Fault Detection, Supervision, and Safety for Technical Processes (SAFEPROCESS)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":8,"referenced_works":["https://openalex.org/W2099658803","https://openalex.org/W2359889981","https://openalex.org/W2513934761","https://openalex.org/W2529293372","https://openalex.org/W2765125680","https://openalex.org/W2780628352","https://openalex.org/W2791294234","https://openalex.org/W3152079243"],"related_works":["https://openalex.org/W4243960761","https://openalex.org/W4238732447","https://openalex.org/W2553656238","https://openalex.org/W2372829958","https://openalex.org/W2155503889","https://openalex.org/W2116284816","https://openalex.org/W2104780442","https://openalex.org/W2090763504","https://openalex.org/W1823457431","https://openalex.org/W148178222"],"abstract_inverted_index":{"On-board":[0],"equipment":[1,22],"is":[2,11,76],"the":[3,17,27,30,50,55,61,71,93,96,105,115,130,146,151],"core":[4],"component":[5],"of":[6,12,20,29,54,58,95,117,133,142,150],"Train":[7],"Control":[8],"System.":[9],"It":[10],"great":[13],"significance":[14,162],"to":[15,25,86,128],"perform":[16],"fault":[18,36,106,122,156],"prediction":[19,37,123,132,140,153,157],"on-board":[21,46,59],"in":[23],"order":[24],"improve":[26],"safety":[28],"train.":[31],"This":[32],"paper":[33],"proposes":[34],"a":[35,120],"method":[38],"based":[39,111],"on":[40,112],"Grey-Elman":[41],"neural":[42],"network(Grey-ENN)":[43],"for":[44,163],"300T":[45],"equipment.":[47],"Firstly,":[48],"through":[49],"statistics":[51],"and":[52,65,135,148,155],"analysis":[53],"AE-log":[56],"data":[57],"equipment,":[60],"operation":[62,88],"states":[63,107],"evaluation":[64],"division":[66],"have":[67],"been":[68,84,126],"completed.":[69],"Secondly,":[70],"GSM-SVM":[72,113],"(Support":[73],"Vector":[74],"Machine":[75],"optimized":[77],"by":[78,91],"Grid":[79],"Search":[80],"Method)":[81],"model":[82,124],"has":[83,125,159],"used":[85],"recognize":[87],"states,":[89],"followed":[90],"verifying":[92],"validity":[94],"equivalent":[97],"failure":[98],"rate.":[99],"The":[100],"experiment":[101],"results":[102],"show":[103],"that":[104],"can":[108],"be":[109],"distinguished":[110],"with":[114,138],"accuracy":[116,141],"93.4%.":[118],"Finally,":[119],"joint":[121],"employed":[127],"accomplish":[129],"complete":[131],"serious":[134],"emergency":[136],"faults":[137],"overall":[139],"86%,":[143],"which":[144],"verifies":[145],"feasibility":[147],"effectiveness":[149],"Grey-Enn":[152],"method,":[154],"result":[158],"certain":[160],"guiding":[161],"maintenance":[164],"decision.":[165]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W3091812678","counts_by_year":[{"year":2024,"cited_by_count":1}],"updated_date":"2024-12-09T04:13:35.964675","created_date":"2020-10-15"}