{"id":"https://openalex.org/W2142631415","doi":"https://doi.org/10.1109/robio.2013.6739464","title":"A novel modeling approach to fall detection and experimental validation using motion capture system","display_name":"A novel modeling approach to fall detection and experimental validation using motion capture system","publication_year":2013,"publication_date":"2013-12-01","ids":{"openalex":"https://openalex.org/W2142631415","doi":"https://doi.org/10.1109/robio.2013.6739464","mag":"2142631415"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/robio.2013.6739464","pdf_url":null,"source":{"id":"https://openalex.org/S4363607846","display_name":"2021 IEEE International Conference on Robotics and Biomimetics (ROBIO)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5071538122","display_name":"Xiangcun Wang","orcid":null},"institutions":[{"id":"https://openalex.org/I113940042","display_name":"Shanghai University","ror":"https://ror.org/006teas31","country_code":"CN","type":"funder","lineage":["https://openalex.org/I113940042"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Xiangcun Wang","raw_affiliation_strings":["[Sch. of Mechatron. Eng. & Autom., Shanghai Univ., Shanghai, China]"],"affiliations":[{"raw_affiliation_string":"[Sch. of Mechatron. Eng. & Autom., Shanghai Univ., Shanghai, China]","institution_ids":["https://openalex.org/I113940042"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5034804183","display_name":"Min Li","orcid":"https://orcid.org/0000-0002-5304-1477"},"institutions":[{"id":"https://openalex.org/I113940042","display_name":"Shanghai University","ror":"https://ror.org/006teas31","country_code":"CN","type":"funder","lineage":["https://openalex.org/I113940042"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Min Li","raw_affiliation_strings":["[Sch. of Mechatron. Eng. & Autom., Shanghai Univ., Shanghai, China]"],"affiliations":[{"raw_affiliation_string":"[Sch. of Mechatron. Eng. & Autom., Shanghai Univ., Shanghai, China]","institution_ids":["https://openalex.org/I113940042"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5113634019","display_name":"Houwei Ji","orcid":null},"institutions":[{"id":"https://openalex.org/I113940042","display_name":"Shanghai University","ror":"https://ror.org/006teas31","country_code":"CN","type":"funder","lineage":["https://openalex.org/I113940042"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Houwei Ji","raw_affiliation_strings":["[Sch. of Mechatron. Eng. & Autom., Shanghai Univ., Shanghai, China]"],"affiliations":[{"raw_affiliation_string":"[Sch. of Mechatron. Eng. & Autom., Shanghai Univ., Shanghai, China]","institution_ids":["https://openalex.org/I113940042"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5100297371","display_name":"Zhenbang Gong","orcid":null},"institutions":[{"id":"https://openalex.org/I113940042","display_name":"Shanghai University","ror":"https://ror.org/006teas31","country_code":"CN","type":"funder","lineage":["https://openalex.org/I113940042"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Zhenbang Gong","raw_affiliation_strings":["[Sch. of Mechatron. Eng. & Autom., Shanghai Univ., Shanghai, China]"],"affiliations":[{"raw_affiliation_string":"[Sch. of Mechatron. Eng. & Autom., Shanghai Univ., Shanghai, China]","institution_ids":["https://openalex.org/I113940042"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.867,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":8,"citation_normalized_percentile":{"value":0.755359,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":83,"max":84},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10444","display_name":"Context-Aware Activity Recognition Systems","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10444","display_name":"Context-Aware Activity Recognition Systems","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10812","display_name":"Human Pose and Action Recognition","score":0.9933,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12740","display_name":"Gait Recognition and Analysis","score":0.9925,"subfield":{"id":"https://openalex.org/subfields/2204","display_name":"Biomedical Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/false-alarm","display_name":"False alarm","score":0.44005424},{"id":"https://openalex.org/keywords/training-set","display_name":"Training set","score":0.43656388},{"id":"https://openalex.org/keywords/motion-detection","display_name":"Motion Detection","score":0.41503754}],"concepts":[{"id":"https://openalex.org/C12267149","wikidata":"https://www.wikidata.org/wiki/Q282453","display_name":"Support vector machine","level":2,"score":0.7517847},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.6661675},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.64095986},{"id":"https://openalex.org/C95623464","wikidata":"https://www.wikidata.org/wiki/Q1096149","display_name":"Classifier (UML)","level":2,"score":0.5579921},{"id":"https://openalex.org/C2779119184","wikidata":"https://www.wikidata.org/wiki/Q294350","display_name":"ALARM","level":2,"score":0.5440833},{"id":"https://openalex.org/C117896860","wikidata":"https://www.wikidata.org/wiki/Q11376","display_name":"Acceleration","level":2,"score":0.52116203},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.4535833},{"id":"https://openalex.org/C2776836416","wikidata":"https://www.wikidata.org/wiki/Q1364844","display_name":"False alarm","level":2,"score":0.44005424},{"id":"https://openalex.org/C51632099","wikidata":"https://www.wikidata.org/wiki/Q3985153","display_name":"Training set","level":2,"score":0.43656388},{"id":"https://openalex.org/C2780624872","wikidata":"https://www.wikidata.org/wiki/Q852453","display_name":"Motion detection","level":3,"score":0.41503754},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.4021823},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.35404867},{"id":"https://openalex.org/C104114177","wikidata":"https://www.wikidata.org/wiki/Q79782","display_name":"Motion (physics)","level":2,"score":0.33836082},{"id":"https://openalex.org/C127413603","wikidata":"https://www.wikidata.org/wiki/Q11023","display_name":"Engineering","level":0,"score":0.18524796},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C74650414","wikidata":"https://www.wikidata.org/wiki/Q11397","display_name":"Classical mechanics","level":1,"score":0.0},{"id":"https://openalex.org/C146978453","wikidata":"https://www.wikidata.org/wiki/Q3798668","display_name":"Aerospace engineering","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/robio.2013.6739464","pdf_url":null,"source":{"id":"https://openalex.org/S4363607846","display_name":"2021 IEEE International Conference on Robotics and Biomimetics (ROBIO)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"score":0.64,"id":"https://metadata.un.org/sdg/16","display_name":"Peace, justice, and strong institutions"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":19,"referenced_works":["https://openalex.org/W1566752807","https://openalex.org/W1985807372","https://openalex.org/W1995650654","https://openalex.org/W2007717933","https://openalex.org/W2009915998","https://openalex.org/W2042565362","https://openalex.org/W2043615600","https://openalex.org/W2054480530","https://openalex.org/W2067454711","https://openalex.org/W2072130063","https://openalex.org/W2081241079","https://openalex.org/W2101286829","https://openalex.org/W2104619880","https://openalex.org/W2116433035","https://openalex.org/W2130629933","https://openalex.org/W2133922998","https://openalex.org/W2153635508","https://openalex.org/W2534614379","https://openalex.org/W2541166653"],"related_works":["https://openalex.org/W83146503","https://openalex.org/W4379535633","https://openalex.org/W4286910063","https://openalex.org/W3203938600","https://openalex.org/W3121346907","https://openalex.org/W2981877337","https://openalex.org/W2188612292","https://openalex.org/W2169074127","https://openalex.org/W2163707935","https://openalex.org/W202723009"],"abstract_inverted_index":{"The":[0,118,131,154],"injuries":[1],"caused":[2],"by":[3,113,163],"falls":[4,87],"are":[5,96,124],"great":[6],"threats":[7],"to":[8,19,56],"the":[9,26,31,43,66,75,115,127,157],"elderly.":[10],"As":[11],"a":[12,52,102,105,145],"consequence,":[13],"fall":[14,38,57,137],"detection":[15,39,45,58,138],"has":[16,160],"been":[17,161],"considered":[18],"play":[20],"an":[21],"important":[22],"role":[23],"in":[24],"monitoring":[25],"security":[27],"and":[28,46,104,150],"well-being":[29],"of":[30,77,90,121,148,152,156],"elderly":[32],"who":[33],"live":[34],"alone.":[35],"However,":[36],"many":[37],"systems":[40],"suffer":[41],"from":[42,61,88,98],"missed":[44],"false":[47],"alarm.":[48],"This":[49],"paper":[50],"presents":[51],"novel":[53],"modeling":[54],"approach":[55,159],"using":[59,126],"data":[60],"motion":[62],"capture":[63],"system.":[64],"In":[65],"proposed":[67,132,158],"model,":[68],"angle":[69],"characteristic":[70,83],"which":[71],"appears":[72],"simultaneously":[73],"with":[74,81,140],"maximum":[76],"acceleration":[78,82],"is":[79,111],"combined":[80],"together":[84],"for":[85],"distinguishing":[86],"activities":[89],"daily":[91],"living":[92],"(ADL).":[93],"Five":[94],"features":[95],"extracted":[97],"each":[99],"activity":[100,119],"as":[101],"sample":[103,116],"SVM":[106],"(Support":[107],"Vector":[108],"Machine)":[109],"classifier":[110,128],"gained":[112,129],"training":[114],"set.":[117],"types":[120],"unknown":[122],"samples":[123],"predicted":[125],"above.":[130],"model":[133],"can":[134],"achieve":[135],"convincing":[136],"results":[139],"different":[141],"subjects":[142],"while":[143],"maintaining":[144],"high":[146],"sensitivity":[147],"100%":[149],"specificity":[151],"94%.":[153],"effectiveness":[155],"validated":[162],"experiments.":[164]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2142631415","counts_by_year":[{"year":2024,"cited_by_count":2},{"year":2023,"cited_by_count":1},{"year":2021,"cited_by_count":1},{"year":2017,"cited_by_count":1},{"year":2016,"cited_by_count":3}],"updated_date":"2025-04-18T23:59:27.158984","created_date":"2016-06-24"}