{"id":"https://openalex.org/W2811171875","doi":"https://doi.org/10.1109/rait.2018.8389031","title":"A fuzzy and contour-based segmentation methodology for handwritten Hindi words in legal documents","display_name":"A fuzzy and contour-based segmentation methodology for handwritten Hindi words in legal documents","publication_year":2018,"publication_date":"2018-03-01","ids":{"openalex":"https://openalex.org/W2811171875","doi":"https://doi.org/10.1109/rait.2018.8389031","mag":"2811171875"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/rait.2018.8389031","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5082451104","display_name":"Rahul Pramanik","orcid":"https://orcid.org/0000-0002-1410-9950"},"institutions":[{"id":"https://openalex.org/I189109744","display_name":"Indian Institute of Technology Dhanbad","ror":"https://ror.org/013v3cc28","country_code":"IN","type":"education","lineage":["https://openalex.org/I189109744"]}],"countries":["IN"],"is_corresponding":false,"raw_author_name":"Rahul Pramanik","raw_affiliation_strings":["Department of Computer Science and Engineering, Indian Institute of Technology (ISM) Dhanbad, Dhanbad, India"],"affiliations":[{"raw_affiliation_string":"Department of Computer Science and Engineering, Indian Institute of Technology (ISM) Dhanbad, Dhanbad, India","institution_ids":["https://openalex.org/I189109744"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5043633373","display_name":"Soumen Bag","orcid":"https://orcid.org/0000-0002-4257-8076"},"institutions":[{"id":"https://openalex.org/I189109744","display_name":"Indian Institute of Technology Dhanbad","ror":"https://ror.org/013v3cc28","country_code":"IN","type":"education","lineage":["https://openalex.org/I189109744"]}],"countries":["IN"],"is_corresponding":false,"raw_author_name":"Soumen Bag","raw_affiliation_strings":["Department of Computer Science and Engineering, Indian Institute of Technology (ISM) Dhanbad, Dhanbad, India"],"affiliations":[{"raw_affiliation_string":"Department of Computer Science and Engineering, Indian Institute of Technology (ISM) Dhanbad, Dhanbad, India","institution_ids":["https://openalex.org/I189109744"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5050309498","display_name":"Ranjeet Kumar","orcid":"https://orcid.org/0000-0001-7917-0181"},"institutions":[{"id":"https://openalex.org/I189109744","display_name":"Indian Institute of Technology Dhanbad","ror":"https://ror.org/013v3cc28","country_code":"IN","type":"education","lineage":["https://openalex.org/I189109744"]}],"countries":["IN"],"is_corresponding":false,"raw_author_name":"Ranjeet Kumar","raw_affiliation_strings":["Department of Computer Science and Engineering, Indian Institute of Technology (ISM) Dhanbad, Dhanbad, India"],"affiliations":[{"raw_affiliation_string":"Department of Computer Science and Engineering, Indian Institute of Technology (ISM) Dhanbad, Dhanbad, India","institution_ids":["https://openalex.org/I189109744"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.282,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":5,"citation_normalized_percentile":{"value":0.342681,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":79,"max":80},"biblio":{"volume":null,"issue":null,"first_page":"1","last_page":"6"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10601","display_name":"Handwritten Text Recognition Techniques","score":1.0,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10601","display_name":"Handwritten Text Recognition Techniques","score":1.0,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12707","display_name":"Vehicle License Plate Recognition","score":0.9986,"subfield":{"id":"https://openalex.org/subfields/2214","display_name":"Media Technology"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12549","display_name":"Image and Object Detection Techniques","score":0.9873,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/text-segmentation","display_name":"Text segmentation","score":0.5004473}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.80428565},{"id":"https://openalex.org/C519982507","wikidata":"https://www.wikidata.org/wiki/Q1568","display_name":"Hindi","level":2,"score":0.7691392},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.7288503},{"id":"https://openalex.org/C89600930","wikidata":"https://www.wikidata.org/wiki/Q1423946","display_name":"Segmentation","level":2,"score":0.6049355},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.5518959},{"id":"https://openalex.org/C124504099","wikidata":"https://www.wikidata.org/wiki/Q56933","display_name":"Image segmentation","level":3,"score":0.52553123},{"id":"https://openalex.org/C98501671","wikidata":"https://www.wikidata.org/wiki/Q1948408","display_name":"Text segmentation","level":3,"score":0.5004473},{"id":"https://openalex.org/C58166","wikidata":"https://www.wikidata.org/wiki/Q224821","display_name":"Fuzzy logic","level":2,"score":0.4680084},{"id":"https://openalex.org/C90805587","wikidata":"https://www.wikidata.org/wiki/Q10944557","display_name":"Word (group theory)","level":2,"score":0.4582237},{"id":"https://openalex.org/C204321447","wikidata":"https://www.wikidata.org/wiki/Q30642","display_name":"Natural language processing","level":1,"score":0.41340777},{"id":"https://openalex.org/C160633673","wikidata":"https://www.wikidata.org/wiki/Q355198","display_name":"Pixel","level":2,"score":0.41281676},{"id":"https://openalex.org/C28490314","wikidata":"https://www.wikidata.org/wiki/Q189436","display_name":"Speech recognition","level":1,"score":0.33335572},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.11889422},{"id":"https://openalex.org/C2524010","wikidata":"https://www.wikidata.org/wiki/Q8087","display_name":"Geometry","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/rait.2018.8389031","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"score":0.5,"display_name":"Peace, justice, and strong institutions","id":"https://metadata.un.org/sdg/16"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":15,"referenced_works":["https://openalex.org/W1622620102","https://openalex.org/W2001635689","https://openalex.org/W2064096728","https://openalex.org/W2115260443","https://openalex.org/W2133059825","https://openalex.org/W2169238270","https://openalex.org/W2186197661","https://openalex.org/W2295305599","https://openalex.org/W2345762016","https://openalex.org/W2404711465","https://openalex.org/W2573602273","https://openalex.org/W2607605500","https://openalex.org/W2758895015","https://openalex.org/W2766470371","https://openalex.org/W2768950517"],"related_works":["https://openalex.org/W2905950556","https://openalex.org/W2393940967","https://openalex.org/W2385598138","https://openalex.org/W2366925922","https://openalex.org/W2346578824","https://openalex.org/W2159591557","https://openalex.org/W2153245103","https://openalex.org/W2115592387","https://openalex.org/W2112534334","https://openalex.org/W120168696"],"abstract_inverted_index":{"Automated":[0],"recognition":[1,21],"system":[2],"for":[3,29,64,127],"handwritten":[4,121],"Hindi":[5,30,122],"words":[6,123],"in":[7,14,102,124],"legal":[8],"documents":[9],"is":[10,25],"an":[11],"essential":[12],"requirement":[13],"India.":[15],"In":[16,40],"order":[17],"to":[18,84,119,138],"achieve":[19],"good":[20],"accuracy,":[22],"precise":[23],"segmentation":[24,48],"necessary.":[26],"Segmentation":[27],"algorithms":[28],"language":[31],"mostly":[32],"uses":[33,71],"zone":[34],"identification":[35],"as":[36],"a":[37,46,56,61,135],"pre-segmentation":[38],"stage.":[39],"the":[41,52,66,72,76,80,86,140],"present":[42],"work,":[43],"we":[44],"propose":[45],"character":[47],"method":[49,97],"that":[50,105,112],"identifies":[51],"different":[53],"zones":[54],"of":[55,75,142],"word":[57,77,103],"image":[58],"and":[59,69,88,91],"utilizes":[60],"fuzzy":[62],"function":[63],"estimating":[65],"headline":[67,82],"pixels":[68,83],"further":[70,132],"outer":[73],"contour":[74],"along":[78],"with":[79],"estimated":[81],"segment":[85,120],"upper":[87],"lower":[89],"modifiers,":[90],"meaningful":[92],"constituent":[93],"characters.":[94],"The":[95],"proposed":[96,144],"can":[98,115],"be":[99,116],"efficiently":[100],"used":[101,118],"images":[104],"have":[106,110,131],"slight":[107],"slant.":[108],"We":[109,130],"delineated":[111],"this":[113],"work":[114],"effectively":[117],"bank":[125],"cheques":[126],"effective":[128],"recognition.":[129],"experimented":[133],"on":[134],"well-known":[136],"dataset":[137],"show":[139],"efficacy":[141],"our":[143],"methodology.":[145]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2811171875","counts_by_year":[{"year":2022,"cited_by_count":1},{"year":2021,"cited_by_count":4}],"updated_date":"2025-01-18T01:04:25.415679","created_date":"2018-07-10"}