{"id":"https://openalex.org/W4395028852","doi":"https://doi.org/10.1109/percomworkshops59983.2024.10502819","title":"Cross-Dataset Continual Learning: Assessing Pre-Trained Models to Enhance Generalization in HAR","display_name":"Cross-Dataset Continual Learning: Assessing Pre-Trained Models to Enhance Generalization in HAR","publication_year":2024,"publication_date":"2024-03-11","ids":{"openalex":"https://openalex.org/W4395028852","doi":"https://doi.org/10.1109/percomworkshops59983.2024.10502819"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/percomworkshops59983.2024.10502819","pdf_url":null,"source":{"id":"https://openalex.org/S4363608020","display_name":"2022 IEEE International Conference on Pervasive Computing and Communications Workshops and other Affiliated Events (PerCom Workshops)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5060571010","display_name":"Bonpagna Kann","orcid":null},"institutions":[{"id":"https://openalex.org/I4210104430","display_name":"Laboratoire d'Informatique de Grenoble","ror":"https://ror.org/01c8rcg82","country_code":"FR","type":"facility","lineage":["https://openalex.org/I106785703","https://openalex.org/I1294671590","https://openalex.org/I1326498283","https://openalex.org/I4210104430","https://openalex.org/I4210159245","https://openalex.org/I899635006"]}],"countries":["FR"],"is_corresponding":false,"raw_author_name":"Bonpagna Kann","raw_affiliation_strings":["Université Grenoble Alpes,Laboratoire d’Informatique de Grenoble,Grenoble,France"],"affiliations":[{"raw_affiliation_string":"Université Grenoble Alpes,Laboratoire d’Informatique de Grenoble,Grenoble,France","institution_ids":["https://openalex.org/I4210104430"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5069891636","display_name":"Sandra Castellanos-Paez","orcid":"https://orcid.org/0000-0002-6241-7974"},"institutions":[{"id":"https://openalex.org/I4210104430","display_name":"Laboratoire d'Informatique de Grenoble","ror":"https://ror.org/01c8rcg82","country_code":"FR","type":"facility","lineage":["https://openalex.org/I106785703","https://openalex.org/I1294671590","https://openalex.org/I1326498283","https://openalex.org/I4210104430","https://openalex.org/I4210159245","https://openalex.org/I899635006"]}],"countries":["FR"],"is_corresponding":false,"raw_author_name":"Sandra Castellanos-Paez","raw_affiliation_strings":["Université Grenoble Alpes,Laboratoire d’Informatique de Grenoble,Grenoble,France"],"affiliations":[{"raw_affiliation_string":"Université Grenoble Alpes,Laboratoire d’Informatique de Grenoble,Grenoble,France","institution_ids":["https://openalex.org/I4210104430"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5001683117","display_name":"Philippe Lalanda","orcid":"https://orcid.org/0000-0002-8185-2605"},"institutions":[{"id":"https://openalex.org/I186365177","display_name":"Institute of Technology of Cambodia","ror":"https://ror.org/054z67s11","country_code":"KH","type":"education","lineage":["https://openalex.org/I186365177"]}],"countries":["KH"],"is_corresponding":false,"raw_author_name":"Philippe Lalanda","raw_affiliation_strings":["Cambodia Academy of Digital Technology, Institute of Digital Research and Innovation, Phnom Penh, Cambodia"],"affiliations":[{"raw_affiliation_string":"Cambodia Academy of Digital Technology, Institute of Digital Research and Innovation, Phnom Penh, Cambodia","institution_ids":["https://openalex.org/I186365177"]}]}],"institution_assertions":[],"countries_distinct_count":2,"institutions_distinct_count":2,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.0,"has_fulltext":false,"cited_by_count":1,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":83,"max":92},"biblio":{"volume":null,"issue":null,"first_page":"1","last_page":"6"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T12535","display_name":"Machine Learning and Data Classification","score":0.7822,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T12535","display_name":"Machine Learning and Data Classification","score":0.7822,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11775","display_name":"COVID-19 diagnosis using AI","score":0.7738,"subfield":{"id":"https://openalex.org/subfields/2741","display_name":"Radiology, Nuclear Medicine and Imaging"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}},{"id":"https://openalex.org/T13702","display_name":"Machine Learning in Healthcare","score":0.7607,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[],"concepts":[{"id":"https://openalex.org/C177148314","wikidata":"https://www.wikidata.org/wiki/Q170084","display_name":"Generalization","level":2,"score":0.7248771},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.69461393},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.6620394},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.6377258},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.112964004},{"id":"https://openalex.org/C134306372","wikidata":"https://www.wikidata.org/wiki/Q7754","display_name":"Mathematical analysis","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/percomworkshops59983.2024.10502819","pdf_url":null,"source":{"id":"https://openalex.org/S4363608020","display_name":"2022 IEEE International Conference on Pervasive Computing and Communications Workshops and other Affiliated Events (PerCom Workshops)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":27,"referenced_works":["https://openalex.org/W1997865285","https://openalex.org/W2060277733","https://openalex.org/W2473930607","https://openalex.org/W2474440410","https://openalex.org/W2560647685","https://openalex.org/W2565989828","https://openalex.org/W2583761661","https://openalex.org/W2790080251","https://openalex.org/W2902456977","https://openalex.org/W2916267633","https://openalex.org/W2921194440","https://openalex.org/W2948734064","https://openalex.org/W2963072899","https://openalex.org/W2963559848","https://openalex.org/W2964189064","https://openalex.org/W3004711070","https://openalex.org/W3091689422","https://openalex.org/W3096831136","https://openalex.org/W3155622457","https://openalex.org/W4206834333","https://openalex.org/W4210399129","https://openalex.org/W4232220759","https://openalex.org/W4295411250","https://openalex.org/W4295883599","https://openalex.org/W4311415873","https://openalex.org/W4319988532","https://openalex.org/W4392173735"],"related_works":["https://openalex.org/W4394896187","https://openalex.org/W4386462264","https://openalex.org/W4364306694","https://openalex.org/W4312192474","https://openalex.org/W4306674287","https://openalex.org/W4283697347","https://openalex.org/W3170094116","https://openalex.org/W3107602296","https://openalex.org/W3046775127","https://openalex.org/W2961085424"],"abstract_inverted_index":{"Pervasive":[0],"computing":[1],"has":[2,55,94,167],"profoundly":[3],"transformed":[4],"the":[5,19,88,129,132,135,161,176,186,213,225,237,241,263,266],"way":[6],"in":[7,43,110,152],"which":[8,144],"companies":[9],"provide":[10],"and":[11,38,67,105,240,269],"develop":[12],"innovative":[13],"services":[14],"across":[15],"various":[16],"sectors.":[17],"In":[18,173],"healthcare":[20,65],"domain,":[21],"for":[22,50,64,120,271],"instance,":[23],"smartphones":[24],"equipped":[25],"with":[26,45,164,197,203,254,258],"sensors":[27],"can":[28,100,145,283],"be":[29,146],"used":[30],"to":[31,34,76,78,122,128,285,291],"collect":[32],"data":[33,42,80,205],"enhance":[35],"health":[36],"diagnostics":[37],"analysis.":[39],"Using":[40,275],"such":[41],"conjunction":[44],"Machine":[46],"Learning":[47,92],"(ML)":[48],"models":[49,73,99,166],"Human":[51],"Activity":[52],"Recognition":[53],"(HAR)":[54],"gained":[56],"significant":[57],"attention,":[58],"as":[59,125,127,169],"it":[60],"offers":[61],"promising":[62,171],"avenues":[63],"innovation":[66],"personalized":[68],"services.":[69],"However,":[70,262],"traditional":[71],"ML":[72],"often":[74],"struggle":[75],"adapt":[77],"evolving":[79],"streams":[81],"over":[82,103],"time.":[83],"To":[84,156],"address":[85],"this":[86,158,174,179],"issue,":[87],"introduction":[89],"of":[90,131,138,178,188,215,265],"Continual":[91],"(CL)":[93],"become":[95],"crucial,":[96],"ensuring":[97],"that":[98,246],"accumulate":[101],"knowledge":[102],"time":[104],"continually":[106],"improve":[107],"their":[108],"performance":[109],"dynamic":[111],"environments.":[112],"This,":[113],"however,":[114],"raises":[115],"several":[116],"major":[117],"issues":[118],"related,":[119],"example,":[121],"catastrophic":[123],"forgetting":[124],"well":[126],"size":[130,137],"datasets.":[133],"Here,":[134],"typical":[136],"HAR":[139,239],"datasets":[140,244],"is":[141,181,273],"relatively":[142],"small,":[143],"an":[147],"issue":[148],"when":[149,195,252,289],"conducting":[150,189],"training":[151],"CL":[153,162,190,226,247,272,287],"from":[154,206,279],"scratch.":[155],"mitigate":[157],"challenge,":[159],"starting":[160,196,253],"process":[163,227],"pre-trained":[165,199,219,256,267,277],"emerged":[168],"a":[170,192,198,207,217,221,230,255,276,292],"strategy.":[172],"context,":[175],"purpose":[177],"paper":[180],"twofold.":[182],"First,":[183],"we":[184,211],"analyze":[185],"impact":[187],"on":[191,220,224,229,236],"target":[193,232],"dataset":[194,223,270,282],"model":[200,218,250,257,268,278],"initially":[201],"built":[202],"limited":[204,259],"similar":[208],"dataset.":[209,233,294],"Furthermore,":[210],"investigate":[212],"effect":[214],"using":[216],"large":[222],"conducted":[228],"smaller":[231],"Our":[234],"experiments":[235],"UCI":[238],"USC":[242],"HAD":[243],"showed":[245],"significantly":[248],"improves":[249],"accuracy":[251,288],"initial":[260],"data.":[261],"choice":[264],"crucial.":[274],"more":[280],"complex":[281],"lead":[284],"better":[286],"moving":[290],"simpler":[293]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4395028852","counts_by_year":[],"updated_date":"2025-01-08T01:09:17.913762","created_date":"2024-04-24"}