{"id":"https://openalex.org/W2951616776","doi":"https://doi.org/10.1109/percomw.2019.8730706","title":"ERL: Edge Based Reinforcement Learning for Optimized Urban Traffic Light Control","display_name":"ERL: Edge Based Reinforcement Learning for Optimized Urban Traffic Light Control","publication_year":2019,"publication_date":"2019-03-01","ids":{"openalex":"https://openalex.org/W2951616776","doi":"https://doi.org/10.1109/percomw.2019.8730706","mag":"2951616776"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/percomw.2019.8730706","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5004288865","display_name":"Pengyuan Zhou","orcid":"https://orcid.org/0000-0002-7909-4059"},"institutions":[{"id":"https://openalex.org/I133731052","display_name":"University of Helsinki","ror":"https://ror.org/040af2s02","country_code":"FI","type":"education","lineage":["https://openalex.org/I133731052"]}],"countries":["FI"],"is_corresponding":false,"raw_author_name":"Pengyuan Zhou","raw_affiliation_strings":["Department of Computer Science, University of Helsinki"],"affiliations":[{"raw_affiliation_string":"Department of Computer Science, University of Helsinki","institution_ids":["https://openalex.org/I133731052"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5056354484","display_name":"Tristan Braud","orcid":"https://orcid.org/0000-0002-9571-0544"},"institutions":[{"id":"https://openalex.org/I200769079","display_name":"Hong Kong University of Science and Technology","ror":"https://ror.org/00q4vv597","country_code":"HK","type":"education","lineage":["https://openalex.org/I200769079"]},{"id":"https://openalex.org/I889458895","display_name":"University of Hong Kong","ror":"https://ror.org/02zhqgq86","country_code":"HK","type":"education","lineage":["https://openalex.org/I889458895"]}],"countries":["HK"],"is_corresponding":false,"raw_author_name":"Tristan Braud","raw_affiliation_strings":["Department of Computer Science and Engineering, The Hong Kong University of Science and Technology"],"affiliations":[{"raw_affiliation_string":"Department of Computer Science and Engineering, The Hong Kong University of Science and Technology","institution_ids":["https://openalex.org/I200769079","https://openalex.org/I889458895"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5061551601","display_name":"Ahmad Alhilal","orcid":"https://orcid.org/0000-0002-2575-1391"},"institutions":[{"id":"https://openalex.org/I889458895","display_name":"University of Hong Kong","ror":"https://ror.org/02zhqgq86","country_code":"HK","type":"education","lineage":["https://openalex.org/I889458895"]},{"id":"https://openalex.org/I200769079","display_name":"Hong Kong University of Science and Technology","ror":"https://ror.org/00q4vv597","country_code":"HK","type":"education","lineage":["https://openalex.org/I200769079"]}],"countries":["HK"],"is_corresponding":false,"raw_author_name":"Ahmad Alhilal","raw_affiliation_strings":["Department of Computer Science and Engineering, The Hong Kong University of Science and Technology"],"affiliations":[{"raw_affiliation_string":"Department of Computer Science and Engineering, The Hong Kong University of Science and Technology","institution_ids":["https://openalex.org/I889458895","https://openalex.org/I200769079"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5029925982","display_name":"Pan Hui","orcid":"https://orcid.org/0000-0002-0848-2599"},"institutions":[{"id":"https://openalex.org/I133731052","display_name":"University of Helsinki","ror":"https://ror.org/040af2s02","country_code":"FI","type":"education","lineage":["https://openalex.org/I133731052"]}],"countries":["FI"],"is_corresponding":false,"raw_author_name":"Pan Hui","raw_affiliation_strings":["Department of Computer Science, University of Helsinki"],"affiliations":[{"raw_affiliation_string":"Department of Computer Science, University of Helsinki","institution_ids":["https://openalex.org/I133731052"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5008046951","display_name":"Jussi Kangasharju","orcid":"https://orcid.org/0000-0001-6119-1638"},"institutions":[{"id":"https://openalex.org/I133731052","display_name":"University of Helsinki","ror":"https://ror.org/040af2s02","country_code":"FI","type":"education","lineage":["https://openalex.org/I133731052"]}],"countries":["FI"],"is_corresponding":false,"raw_author_name":"Jussi Kangasharju","raw_affiliation_strings":["Department of Computer Science, University of Helsinki"],"affiliations":[{"raw_affiliation_string":"Department of Computer Science, University of Helsinki","institution_ids":["https://openalex.org/I133731052"]}]}],"institution_assertions":[{"id":"https://openalex.org/I204337017","display_name":"Aarhus University","ror":"https://ror.org/01aj84f44","country_code":"DK","type":"education","lineage":["https://openalex.org/I204337017"]}],"countries_distinct_count":2,"institutions_distinct_count":3,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":6.213,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":23,"citation_normalized_percentile":{"value":0.824761,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":92,"max":93},"biblio":{"volume":"5","issue":null,"first_page":"849","last_page":"854"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11344","display_name":"Traffic Prediction and Management Techniques","score":0.9998,"subfield":{"id":"https://openalex.org/subfields/2215","display_name":"Building and Construction"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11344","display_name":"Traffic Prediction and Management Techniques","score":0.9998,"subfield":{"id":"https://openalex.org/subfields/2215","display_name":"Building and Construction"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10524","display_name":"Traffic control and management","score":0.9991,"subfield":{"id":"https://openalex.org/subfields/2207","display_name":"Control and Systems Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10698","display_name":"Transportation Planning and Optimization","score":0.9977,"subfield":{"id":"https://openalex.org/subfields/3313","display_name":"Transportation"},"field":{"id":"https://openalex.org/fields/33","display_name":"Social Sciences"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}}],"keywords":[],"concepts":[{"id":"https://openalex.org/C93996380","wikidata":"https://www.wikidata.org/wiki/Q44127","display_name":"Server","level":2,"score":0.7939753},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.7643752},{"id":"https://openalex.org/C97541855","wikidata":"https://www.wikidata.org/wiki/Q830687","display_name":"Reinforcement learning","level":2,"score":0.74325013},{"id":"https://openalex.org/C2779888511","wikidata":"https://www.wikidata.org/wiki/Q244156","display_name":"Traffic congestion","level":2,"score":0.6910027},{"id":"https://openalex.org/C162307627","wikidata":"https://www.wikidata.org/wiki/Q204833","display_name":"Enhanced Data Rates for GSM Evolution","level":2,"score":0.675732},{"id":"https://openalex.org/C64543145","wikidata":"https://www.wikidata.org/wiki/Q162942","display_name":"Intersection (aeronautics)","level":2,"score":0.6661092},{"id":"https://openalex.org/C2778456923","wikidata":"https://www.wikidata.org/wiki/Q5337692","display_name":"Edge computing","level":3,"score":0.6169169},{"id":"https://openalex.org/C195563490","wikidata":"https://www.wikidata.org/wiki/Q180368","display_name":"Network congestion","level":3,"score":0.52333635},{"id":"https://openalex.org/C47796450","wikidata":"https://www.wikidata.org/wiki/Q508378","display_name":"Intelligent transportation system","level":2,"score":0.50526005},{"id":"https://openalex.org/C31258907","wikidata":"https://www.wikidata.org/wiki/Q1301371","display_name":"Computer network","level":1,"score":0.46808153},{"id":"https://openalex.org/C64093975","wikidata":"https://www.wikidata.org/wiki/Q356677","display_name":"Floating car data","level":3,"score":0.44912222},{"id":"https://openalex.org/C79403827","wikidata":"https://www.wikidata.org/wiki/Q3988","display_name":"Real-time computing","level":1,"score":0.44325516},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.26693708},{"id":"https://openalex.org/C22212356","wikidata":"https://www.wikidata.org/wiki/Q775325","display_name":"Transport engineering","level":1,"score":0.18385267},{"id":"https://openalex.org/C127413603","wikidata":"https://www.wikidata.org/wiki/Q11023","display_name":"Engineering","level":0,"score":0.13370106},{"id":"https://openalex.org/C158379750","wikidata":"https://www.wikidata.org/wiki/Q214111","display_name":"Network packet","level":2,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/percomw.2019.8730706","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"display_name":"Sustainable cities and communities","score":0.82,"id":"https://metadata.un.org/sdg/11"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":19,"referenced_works":["https://openalex.org/W102949979","https://openalex.org/W1522301498","https://openalex.org/W1549696287","https://openalex.org/W1869778509","https://openalex.org/W1989750313","https://openalex.org/W1993074634","https://openalex.org/W2036785686","https://openalex.org/W2108196201","https://openalex.org/W2124657875","https://openalex.org/W2498017881","https://openalex.org/W2523246573","https://openalex.org/W2548134372","https://openalex.org/W2610558073","https://openalex.org/W2613020517","https://openalex.org/W2886733108","https://openalex.org/W2964121744","https://openalex.org/W3013082658","https://openalex.org/W3106357768","https://openalex.org/W56323805"],"related_works":["https://openalex.org/W4390341805","https://openalex.org/W4386289889","https://openalex.org/W4360619413","https://openalex.org/W4210448965","https://openalex.org/W3069032","https://openalex.org/W3042990279","https://openalex.org/W2994939960","https://openalex.org/W2982084411","https://openalex.org/W2973192971","https://openalex.org/W2005409769"],"abstract_inverted_index":{"Traffic":[0],"congestion":[1,65,111,164],"is":[2,53],"worsening":[3],"in":[4,33,45,119,186,194],"every":[5],"major":[6],"city":[7],"and":[8,14,27,30,60,153,182],"brings":[9],"increasing":[10],"costs":[11],"to":[12,21,41,63,68,105,129,161],"governments":[13],"drivers.":[15],"Vehicular":[16],"networks":[17],"provide":[18,162],"the":[19,50,131,134,146,150],"ability":[20],"collect":[22,106],"more":[23],"data":[24,156,172],"from":[25,157],"vehicles":[26],"roadside":[28],"units,":[29],"sense":[31],"traffic":[32,43,85,107,116,135],"real":[34,120,170],"time.":[35,121],"They":[36],"represent":[37],"a":[38,98],"promising":[39],"solution":[40,57,99],"alleviate":[42,64],"jams":[44],"urban":[46],"environments.":[47],"However,":[48],"while":[49],"collected":[51],"information":[52],"valuable,":[54],"an":[55],"efficient":[56],"for":[58,83,140],"better":[59],"faster":[61],"utilization":[62],"has":[66],"yet":[67],"be":[69],"developed.":[70],"Current":[71],"solutions":[72],"are":[73],"either":[74],"based":[75,100,168],"on":[76,101,169],"mathematical":[77],"models,":[78],"which":[79],"do":[80],"not":[81],"account":[82],"complex":[84],"scenarios":[86],"or":[87],"small-scale":[88],"machine":[89],"learning":[90,127],"algorithms.":[91],"In":[92],"this":[93],"paper,":[94],"we":[95],"propose":[96],"ERL,":[97],"Edge":[102,122],"Computing":[103],"nodes":[104],"data.":[108],"ERL":[109,143],"alleviates":[110],"by":[112],"providing":[113],"intelligent":[114],"optimized":[115],"light":[117],"control":[118,137],"servers":[123,160],"run":[124],"fast":[125,192],"reinforcement":[126],"algorithms":[128],"tune":[130],"metrics":[132],"of":[133,149],"signal":[136],"algorithm":[138],"ran":[139],"each":[141],"intersection.":[142],"operates":[144],"within":[145],"coverage":[147],"area":[148],"edge":[151,159],"server,":[152],"uses":[154],"aggregated":[155],"neighboring":[158],"city-scale":[163],"control.":[165],"The":[166],"evaluation":[167],"map":[171],"shows":[173],"that":[174],"our":[175],"system":[176],"decreases":[177],"48.71%":[178],"average":[179],"waiting":[180],"time":[181],"32.77%":[183],"trip":[184],"duration":[185],"normally":[187],"congested":[188],"areas,":[189],"with":[190],"very":[191],"training":[193],"ordinary":[195],"servers.":[196]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2951616776","counts_by_year":[{"year":2023,"cited_by_count":3},{"year":2022,"cited_by_count":1},{"year":2021,"cited_by_count":8},{"year":2020,"cited_by_count":11}],"updated_date":"2024-12-13T18:24:27.727279","created_date":"2019-06-27"}