{"id":"https://openalex.org/W3023644623","doi":"https://doi.org/10.1109/nanoarch47378.2019.181284","title":"An Energy-Efficient In-Memory BNN Architecture With Time-Domain Analog and Digital Mixed-Signal Processing","display_name":"An Energy-Efficient In-Memory BNN Architecture With Time-Domain Analog and Digital Mixed-Signal Processing","publication_year":2019,"publication_date":"2019-07-01","ids":{"openalex":"https://openalex.org/W3023644623","doi":"https://doi.org/10.1109/nanoarch47378.2019.181284","mag":"3023644623"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/nanoarch47378.2019.181284","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5100453725","display_name":"Tao Wang","orcid":"https://orcid.org/0009-0000-8753-706X"},"institutions":[{"id":"https://openalex.org/I76569877","display_name":"Southeast University","ror":"https://ror.org/04ct4d772","country_code":"CN","type":"education","lineage":["https://openalex.org/I76569877"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Tao Wang","raw_affiliation_strings":["School of Eletronic Science and Eegineering, Southeast University, Nanjing, China"],"affiliations":[{"raw_affiliation_string":"School of Eletronic Science and Eegineering, Southeast University, Nanjing, China","institution_ids":["https://openalex.org/I76569877"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5057291086","display_name":"Weiwei Shan","orcid":"https://orcid.org/0000-0001-5520-1326"},"institutions":[{"id":"https://openalex.org/I76569877","display_name":"Southeast University","ror":"https://ror.org/04ct4d772","country_code":"CN","type":"education","lineage":["https://openalex.org/I76569877"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Weiwei Shan","raw_affiliation_strings":["School of Eletronic Science and Eegineering, Southeast University, Nanjing, China"],"affiliations":[{"raw_affiliation_string":"School of Eletronic Science and Eegineering, Southeast University, Nanjing, China","institution_ids":["https://openalex.org/I76569877"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.326,"has_fulltext":false,"cited_by_count":4,"citation_normalized_percentile":{"value":0.691191,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":77,"max":79},"biblio":{"volume":null,"issue":null,"first_page":"1","last_page":"6"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10502","display_name":"Advanced Memory and Neural Computing","score":1.0,"subfield":{"id":"https://openalex.org/subfields/2208","display_name":"Electrical and Electronic Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10502","display_name":"Advanced Memory and Neural Computing","score":1.0,"subfield":{"id":"https://openalex.org/subfields/2208","display_name":"Electrical and Electronic Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12808","display_name":"Ferroelectric and Negative Capacitance Devices","score":0.9955,"subfield":{"id":"https://openalex.org/subfields/2208","display_name":"Electrical and Electronic Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10036","display_name":"Advanced Neural Network Applications","score":0.9933,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/mixed-signal-integrated-circuit","display_name":"Mixed-signal integrated circuit","score":0.5423688}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.7163395},{"id":"https://openalex.org/C104267543","wikidata":"https://www.wikidata.org/wiki/Q208163","display_name":"Signal processing","level":3,"score":0.5976042},{"id":"https://openalex.org/C62907940","wikidata":"https://www.wikidata.org/wiki/Q1541329","display_name":"Mixed-signal integrated circuit","level":3,"score":0.5423688},{"id":"https://openalex.org/C84462506","wikidata":"https://www.wikidata.org/wiki/Q173142","display_name":"Digital signal processing","level":2,"score":0.5346723},{"id":"https://openalex.org/C123657996","wikidata":"https://www.wikidata.org/wiki/Q12271","display_name":"Architecture","level":2,"score":0.5063046},{"id":"https://openalex.org/C36503486","wikidata":"https://www.wikidata.org/wiki/Q11235244","display_name":"Domain (mathematical analysis)","level":2,"score":0.46882436},{"id":"https://openalex.org/C186370098","wikidata":"https://www.wikidata.org/wiki/Q442787","display_name":"Energy (signal processing)","level":2,"score":0.4372213},{"id":"https://openalex.org/C52773712","wikidata":"https://www.wikidata.org/wiki/Q175022","display_name":"Digital signal","level":3,"score":0.42535138},{"id":"https://openalex.org/C118524514","wikidata":"https://www.wikidata.org/wiki/Q173212","display_name":"Computer architecture","level":1,"score":0.38963997},{"id":"https://openalex.org/C9390403","wikidata":"https://www.wikidata.org/wiki/Q3966","display_name":"Computer hardware","level":1,"score":0.27038163},{"id":"https://openalex.org/C530198007","wikidata":"https://www.wikidata.org/wiki/Q80831","display_name":"Integrated circuit","level":2,"score":0.099190354},{"id":"https://openalex.org/C142362112","wikidata":"https://www.wikidata.org/wiki/Q735","display_name":"Art","level":0,"score":0.0},{"id":"https://openalex.org/C134306372","wikidata":"https://www.wikidata.org/wiki/Q7754","display_name":"Mathematical analysis","level":1,"score":0.0},{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.0},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.0},{"id":"https://openalex.org/C153349607","wikidata":"https://www.wikidata.org/wiki/Q36649","display_name":"Visual arts","level":1,"score":0.0},{"id":"https://openalex.org/C111919701","wikidata":"https://www.wikidata.org/wiki/Q9135","display_name":"Operating system","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/nanoarch47378.2019.181284","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"score":0.91,"display_name":"Affordable and clean energy","id":"https://metadata.un.org/sdg/7"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":30,"referenced_works":["https://openalex.org/W1536680647","https://openalex.org/W1686810756","https://openalex.org/W179875071","https://openalex.org/W1836465849","https://openalex.org/W2086112773","https://openalex.org/W2094756095","https://openalex.org/W2097117768","https://openalex.org/W2146276996","https://openalex.org/W2163605009","https://openalex.org/W2276486856","https://openalex.org/W2285660444","https://openalex.org/W2289252105","https://openalex.org/W2300242332","https://openalex.org/W2319920447","https://openalex.org/W2331783522","https://openalex.org/W2565125333","https://openalex.org/W2591601611","https://openalex.org/W2593564159","https://openalex.org/W2594492285","https://openalex.org/W2725092576","https://openalex.org/W2743834391","https://openalex.org/W2745228312","https://openalex.org/W2760618536","https://openalex.org/W2771238178","https://openalex.org/W2798332427","https://openalex.org/W2898665561","https://openalex.org/W2901214301","https://openalex.org/W2963145956","https://openalex.org/W3024621361","https://openalex.org/W3102169921"],"related_works":["https://openalex.org/W4235913033","https://openalex.org/W4232397253","https://openalex.org/W4210925376","https://openalex.org/W4210376836","https://openalex.org/W3193411882","https://openalex.org/W2596211269","https://openalex.org/W2416214423","https://openalex.org/W2360384790","https://openalex.org/W197862639","https://openalex.org/W1633995705"],"abstract_inverted_index":{"Neural":[0],"networks":[1],"(NN)":[2],"have":[3],"been":[4],"widely":[5],"used":[6],"in":[7,171],"various":[8],"applications.":[9],"However,":[10],"the":[11,37,53,58,86,94,119,151,157,163,188,193,202,209],"high":[12],"computational":[13,29],"complexity":[14,120],"and":[15,25,31,52,60,73,96,116,123,167,176],"energy":[16,32,131,203],"consumption":[17],"of":[18,36,108,121,125,141,154,162,196],"NNs":[19],"impede":[20],"their":[21],"deployment":[22],"on":[23,42,150],"embedded":[24],"mobile":[26],"platforms,":[27],"where":[28],"resources":[30],"are":[33,40,169],"limited.":[34],"Most":[35],"existing":[38],"accelerators":[39],"based":[41],"traditional":[43],"Von":[44],"Neumann(VN)":[45],"architecture,":[46],"which":[47,180],"separates":[48],"computing":[49,68,72],"from":[50],"storage,":[51],"massive":[54],"data":[55,83,158,189],"movement":[56],"between":[57],"processor":[59],"off-chip":[61],"memory":[62,79,126],"causes":[63],"great":[64],"power":[65],"consumption.":[66],"In-memory":[67],"(IMC)":[69],"architecture":[70,135],"integrates":[71],"storage":[74],"together":[75],"to":[76,99,186],"eliminate":[77],"explicit":[78],"access,":[80],"reducing":[81],"energy-hungry":[82],"transmission.":[84],"On":[85],"other":[87],"hand,":[88],"binary":[89],"neural":[90],"network":[91],"(BNN)":[92],"restricts":[93],"weight":[95],"activation":[97],"value":[98],"either":[100],"-1":[101],"or":[102],"+1,":[103],"converting":[104],"a":[105],"large":[106],"number":[107],"multiplications":[109],"into":[110],"simple":[111],"bit-wise":[112,145],"XNOR":[113,146],"logical":[114],"operations,":[115],"significantly":[117],"reduces":[118],"computation":[122],"amount":[124],"access.":[127],"We":[128],"propose":[129],"an":[130],"efficient":[132],"in-memory":[133],"BNN":[134],"that":[136],"performs":[137],"matrix-vector":[138],"multiplication":[139],"(M\u00d7V)":[140],"FC":[142],"layers.":[143],"The":[144,165],"operation":[147],"is":[148,160,205],"realized":[149],"bit":[152],"line":[153],"SRAM,":[155],"making":[156],"fetching":[159],"part":[161],"computation.":[164],"accumulation":[166],"binarization":[168],"performed":[170],"time":[172],"domain":[173],"with":[174,184,213],"analog":[175],"digital":[177,211],"mixed-signal":[178],"processing,":[179],"can":[181],"be":[182],"blended":[183],"SRAM":[185],"minimize":[187],"transmission":[190],"overhead.":[191],"In":[192],"operating":[194],"condition":[195],"TT":[197],"0.5V":[198],"25":[199],"\u0107":[200],"50MHZ,":[201],"efficiency":[204],"96.249":[206],"TOPS/W,":[207],"surpassing":[208],"conventional":[210],"implementation":[212],"similar":[214],"performance":[215],"by":[216],"2.09\u00d7.":[217]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W3023644623","counts_by_year":[{"year":2024,"cited_by_count":1},{"year":2023,"cited_by_count":2},{"year":2021,"cited_by_count":1}],"updated_date":"2025-01-06T10:43:26.494317","created_date":"2020-05-13"}