{"id":"https://openalex.org/W3022973589","doi":"https://doi.org/10.1109/nanoarch47378.2019.181283","title":"ynamic Adaptation of Approximate Bit-width for CNNs based on Quantitative Error Resilience","display_name":"ynamic Adaptation of Approximate Bit-width for CNNs based on Quantitative Error Resilience","publication_year":2019,"publication_date":"2019-07-01","ids":{"openalex":"https://openalex.org/W3022973589","doi":"https://doi.org/10.1109/nanoarch47378.2019.181283","mag":"3022973589"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/nanoarch47378.2019.181283","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5012017810","display_name":"Chengjun Wu","orcid":"https://orcid.org/0000-0001-8512-9783"},"institutions":[{"id":"https://openalex.org/I76569877","display_name":"Southeast University","ror":"https://ror.org/04ct4d772","country_code":"CN","type":"education","lineage":["https://openalex.org/I76569877"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Chengjun Wu","raw_affiliation_strings":["School of Electronic Science and Engineering, Southeast University, NanJing, China"],"affiliations":[{"raw_affiliation_string":"School of Electronic Science and Engineering, Southeast University, NanJing, China","institution_ids":["https://openalex.org/I76569877"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5057291086","display_name":"Weiwei Shan","orcid":"https://orcid.org/0000-0001-5520-1326"},"institutions":[{"id":"https://openalex.org/I76569877","display_name":"Southeast University","ror":"https://ror.org/04ct4d772","country_code":"CN","type":"education","lineage":["https://openalex.org/I76569877"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Weiwei Shan","raw_affiliation_strings":["School of Electronic Science and Engineering, Southeast University, NanJing, China"],"affiliations":[{"raw_affiliation_string":"School of Electronic Science and Engineering, Southeast University, NanJing, China","institution_ids":["https://openalex.org/I76569877"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5045481769","display_name":"Jiaming Xu","orcid":"https://orcid.org/0000-0001-7232-7852"},"institutions":[{"id":"https://openalex.org/I76569877","display_name":"Southeast University","ror":"https://ror.org/04ct4d772","country_code":"CN","type":"education","lineage":["https://openalex.org/I76569877"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Jiaming Xu","raw_affiliation_strings":["School of Electronic Science and Engineering, Southeast University, NanJing, China"],"affiliations":[{"raw_affiliation_string":"School of Electronic Science and Engineering, Southeast University, NanJing, China","institution_ids":["https://openalex.org/I76569877"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.064,"has_fulltext":false,"cited_by_count":2,"citation_normalized_percentile":{"value":0.39811,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":69,"max":74},"biblio":{"volume":null,"issue":null,"first_page":"1","last_page":"6"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10036","display_name":"Advanced Neural Network Applications","score":0.9994,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10036","display_name":"Advanced Neural Network Applications","score":0.9994,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10502","display_name":"Advanced Memory and Neural Computing","score":0.9993,"subfield":{"id":"https://openalex.org/subfields/2208","display_name":"Electrical and Electronic Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11689","display_name":"Adversarial Robustness in Machine Learning","score":0.9976,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/resilience","display_name":"Resilience","score":0.758831}],"concepts":[{"id":"https://openalex.org/C2779585090","wikidata":"https://www.wikidata.org/wiki/Q3457762","display_name":"Resilience (materials science)","level":2,"score":0.758831},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.66990197},{"id":"https://openalex.org/C139807058","wikidata":"https://www.wikidata.org/wiki/Q352374","display_name":"Adaptation (eye)","level":2,"score":0.6078714},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.47110894},{"id":"https://openalex.org/C94375191","wikidata":"https://www.wikidata.org/wiki/Q11205","display_name":"Arithmetic","level":1,"score":0.39066994},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.27507916},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.07158345},{"id":"https://openalex.org/C120665830","wikidata":"https://www.wikidata.org/wiki/Q14620","display_name":"Optics","level":1,"score":0.0},{"id":"https://openalex.org/C97355855","wikidata":"https://www.wikidata.org/wiki/Q11473","display_name":"Thermodynamics","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/nanoarch47378.2019.181283","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"id":"https://metadata.un.org/sdg/7","score":0.89,"display_name":"Affordable and clean energy"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":15,"referenced_works":["https://openalex.org/W1998917233","https://openalex.org/W2020827807","https://openalex.org/W2023025532","https://openalex.org/W2059753834","https://openalex.org/W2090557012","https://openalex.org/W2104578404","https://openalex.org/W2112796928","https://openalex.org/W2135089667","https://openalex.org/W2260663238","https://openalex.org/W2798993323","https://openalex.org/W2897362884","https://openalex.org/W2909067195","https://openalex.org/W2914418491","https://openalex.org/W3141620748","https://openalex.org/W4242921037"],"related_works":["https://openalex.org/W4391913857","https://openalex.org/W2748952813","https://openalex.org/W2478288626","https://openalex.org/W2390279801","https://openalex.org/W2382290278","https://openalex.org/W2376932109","https://openalex.org/W2358668433","https://openalex.org/W2073681303","https://openalex.org/W2051487156","https://openalex.org/W2001405890"],"abstract_inverted_index":{"As":[0],"an":[1],"emerging":[2],"paradigm":[3],"for":[4,59,103,175,204],"energy-efficiency":[5],"design,":[6],"approximate":[7,24,47,80,93,134,173,186],"computing":[8,48,60,81,94],"can":[9,32],"reduce":[10,55],"power":[11,86,163,189],"consumption":[12,87,164,190],"through":[13],"simplification":[14],"of":[15,79,88,108,127,133,149,162,185,201],"logic":[16],"circuits.":[17],"Although":[18],"calculation":[19],"errors":[20],"are":[21,141],"caused":[22],"by":[23,111,179,191],"computing,":[25],"their":[26],"impacts":[27],"on":[28,82],"the":[29,56,66,77,83,92,105,125,137,146,155,160,171,202],"final":[30],"results":[31,152],"be":[33],"negligible":[34],"in":[35],"some":[36],"error":[37,106,117,129,147],"resilient":[38],"applications,":[39],"such":[40,69],"as":[41,70],"Convolutional":[42],"Neural":[43],"Networks":[44],"(CNNs).":[45],"Therefore,":[46],"has":[49],"been":[50],"applied":[51,96],"to":[52,54,97,143],"CNNs":[53],"high":[57,167],"demand":[58],"resources":[61],"and":[62,85,114,136,195],"energy.":[63],"Compared":[64],"with":[65],"traditional":[67],"method":[68,102,157],"reducing":[71],"data":[72],"precision,":[73],"this":[74],"paper":[75],"investigates":[76],"effect":[78],"accuracy":[84,203],"CNNs.":[89,150],"To":[90],"optimize":[91],"technology":[95],"CNNs,":[98],"we":[99],"propose":[100],"a":[101],"quantifying":[104],"resilience":[107,118,148],"each":[109,176],"neuron":[110],"theoretical":[112],"analysis":[113],"observe":[115],"that":[116,154],"varies":[119],"widely":[120],"across":[121],"different":[122],"neurons.":[123],"On":[124],"basic":[126],"quantitative":[128],"resilience,":[130],"dynamic":[131,183],"adaptation":[132,184],"bit-width":[135,174,187],"corresponding":[138],"configurable":[139],"adder":[140],"proposed":[142,156,181],"fully":[144],"exploit":[145],"Experimental":[151],"show":[153],"further":[158],"improves":[159],"performance":[161],"while":[165],"maintaining":[166],"accuracy.":[168],"By":[169],"adopting":[170],"optimal":[172],"layer":[177],"found":[178],"our":[180],"algorithm,":[182],"reduces":[188],"more":[192],"than":[193,198],"30%":[194],"causes":[196],"less":[197],"1%":[199],"loss":[200],"LeNet-5.":[205]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W3022973589","counts_by_year":[{"year":2024,"cited_by_count":1},{"year":2021,"cited_by_count":1}],"updated_date":"2025-01-06T10:46:20.652401","created_date":"2020-05-13"}