{"id":"https://openalex.org/W3176366966","doi":"https://doi.org/10.1109/msr52588.2021.00025","title":"On Improving Deep Learning Trace Analysis with System Call Arguments","display_name":"On Improving Deep Learning Trace Analysis with System Call Arguments","publication_year":2021,"publication_date":"2021-05-01","ids":{"openalex":"https://openalex.org/W3176366966","doi":"https://doi.org/10.1109/msr52588.2021.00025","mag":"3176366966"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/msr52588.2021.00025","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/pdf/2103.06915","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5065944848","display_name":"Quentin Fournier","orcid":"https://orcid.org/0000-0002-1036-0777"},"institutions":[{"id":"https://openalex.org/I45683168","display_name":"Polytechnique Montr\u00e9al","ror":"https://ror.org/05f8d4e86","country_code":"CA","type":"education","lineage":["https://openalex.org/I45683168"]}],"countries":["CA"],"is_corresponding":false,"raw_author_name":"Quentin Fournier","raw_affiliation_strings":["Polytechnique Montr\u00e9al, Quebec"],"affiliations":[{"raw_affiliation_string":"Polytechnique Montr\u00e9al, Quebec","institution_ids":["https://openalex.org/I45683168"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5038720756","display_name":"Daniel Aloise","orcid":"https://orcid.org/0000-0002-9876-2921"},"institutions":[{"id":"https://openalex.org/I45683168","display_name":"Polytechnique Montr\u00e9al","ror":"https://ror.org/05f8d4e86","country_code":"CA","type":"education","lineage":["https://openalex.org/I45683168"]}],"countries":["CA"],"is_corresponding":false,"raw_author_name":"Daniel Aloise","raw_affiliation_strings":["Polytechnique Montr\u00e9al, Quebec"],"affiliations":[{"raw_affiliation_string":"Polytechnique Montr\u00e9al, Quebec","institution_ids":["https://openalex.org/I45683168"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5109583510","display_name":"Seyed Vahid Azhari","orcid":null},"institutions":[{"id":"https://openalex.org/I4210160469","display_name":"Ciena (Canada)","ror":"https://ror.org/05agqdk49","country_code":"CA","type":"company","lineage":["https://openalex.org/I1295297804","https://openalex.org/I4210160469"]}],"countries":["CA"],"is_corresponding":false,"raw_author_name":"Seyed Vahid Azhari","raw_affiliation_strings":["Ciena, Ottawa"],"affiliations":[{"raw_affiliation_string":"Ciena, Ottawa","institution_ids":["https://openalex.org/I4210160469"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5056538049","display_name":"Fran\u00e7ois Tetreault","orcid":"https://orcid.org/0000-0003-1975-1501"},"institutions":[{"id":"https://openalex.org/I4210160469","display_name":"Ciena (Canada)","ror":"https://ror.org/05agqdk49","country_code":"CA","type":"company","lineage":["https://openalex.org/I1295297804","https://openalex.org/I4210160469"]}],"countries":["CA"],"is_corresponding":false,"raw_author_name":"Francois Tetreault","raw_affiliation_strings":["Ciena, Ottawa"],"affiliations":[{"raw_affiliation_string":"Ciena, Ottawa","institution_ids":["https://openalex.org/I4210160469"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":2,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":1.227,"has_fulltext":false,"cited_by_count":6,"citation_normalized_percentile":{"value":0.99978,"is_in_top_1_percent":true,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":81,"max":83},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10260","display_name":"Empirical Studies in Software Engineering","score":0.9993,"subfield":{"id":"https://openalex.org/subfields/1710","display_name":"Information Systems"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10260","display_name":"Empirical Studies in Software Engineering","score":0.9993,"subfield":{"id":"https://openalex.org/subfields/1710","display_name":"Information Systems"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12127","display_name":"Log Analysis and System Performance Diagnosis","score":0.9986,"subfield":{"id":"https://openalex.org/subfields/1705","display_name":"Computer Networks and Communications"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10400","display_name":"Network Intrusion Detection and Defense Mechanisms","score":0.9982,"subfield":{"id":"https://openalex.org/subfields/1705","display_name":"Computer Networks and Communications"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/system-call","display_name":"System call","score":0.72924197},{"id":"https://openalex.org/keywords/log-analysis","display_name":"Log Analysis","score":0.551205},{"id":"https://openalex.org/keywords/source-code-analysis","display_name":"Source Code Analysis","score":0.53122},{"id":"https://openalex.org/keywords/deep-learning","display_name":"Deep Learning","score":0.521466},{"id":"https://openalex.org/keywords/performance-prediction","display_name":"Performance Prediction","score":0.511138},{"id":"https://openalex.org/keywords/requirements-traceability","display_name":"Requirements Traceability","score":0.507692},{"id":"https://openalex.org/keywords/trace","display_name":"TRACE (psycholinguistics)","score":0.47162294}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.8347524},{"id":"https://openalex.org/C2778579508","wikidata":"https://www.wikidata.org/wiki/Q722192","display_name":"System call","level":2,"score":0.72924197},{"id":"https://openalex.org/C113954288","wikidata":"https://www.wikidata.org/wiki/Q186885","display_name":"Timestamp","level":2,"score":0.58302206},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.53601384},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.5352294},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.5239142},{"id":"https://openalex.org/C41608201","wikidata":"https://www.wikidata.org/wiki/Q980509","display_name":"Embedding","level":2,"score":0.4958404},{"id":"https://openalex.org/C2779662365","wikidata":"https://www.wikidata.org/wiki/Q5416694","display_name":"Event (particle physics)","level":2,"score":0.4886692},{"id":"https://openalex.org/C75291252","wikidata":"https://www.wikidata.org/wiki/Q1315756","display_name":"TRACE (psycholinguistics)","level":2,"score":0.47162294},{"id":"https://openalex.org/C108583219","wikidata":"https://www.wikidata.org/wiki/Q197536","display_name":"Deep learning","level":2,"score":0.4656542},{"id":"https://openalex.org/C93996380","wikidata":"https://www.wikidata.org/wiki/Q44127","display_name":"Server","level":2,"score":0.42964154},{"id":"https://openalex.org/C66322947","wikidata":"https://www.wikidata.org/wiki/Q11658","display_name":"Transformer","level":3,"score":0.41580227},{"id":"https://openalex.org/C204321447","wikidata":"https://www.wikidata.org/wiki/Q30642","display_name":"Natural language processing","level":1,"score":0.35421705},{"id":"https://openalex.org/C136764020","wikidata":"https://www.wikidata.org/wiki/Q466","display_name":"World Wide Web","level":1,"score":0.11307809},{"id":"https://openalex.org/C165801399","wikidata":"https://www.wikidata.org/wiki/Q25428","display_name":"Voltage","level":2,"score":0.0},{"id":"https://openalex.org/C41895202","wikidata":"https://www.wikidata.org/wiki/Q8162","display_name":"Linguistics","level":1,"score":0.0},{"id":"https://openalex.org/C138885662","wikidata":"https://www.wikidata.org/wiki/Q5891","display_name":"Philosophy","level":0,"score":0.0},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C38652104","wikidata":"https://www.wikidata.org/wiki/Q3510521","display_name":"Computer security","level":1,"score":0.0},{"id":"https://openalex.org/C62520636","wikidata":"https://www.wikidata.org/wiki/Q944","display_name":"Quantum mechanics","level":1,"score":0.0},{"id":"https://openalex.org/C199360897","wikidata":"https://www.wikidata.org/wiki/Q9143","display_name":"Programming language","level":1,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/msr52588.2021.00025","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2103.06915","pdf_url":"https://arxiv.org/pdf/2103.06915","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2103.06915","pdf_url":"https://arxiv.org/pdf/2103.06915","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":35,"referenced_works":["https://openalex.org/W1539027","https://openalex.org/W1836465849","https://openalex.org/W1952056635","https://openalex.org/W1973841765","https://openalex.org/W1981738628","https://openalex.org/W2046255282","https://openalex.org/W2053632570","https://openalex.org/W2064675550","https://openalex.org/W2092055714","https://openalex.org/W2095705004","https://openalex.org/W2128217000","https://openalex.org/W2130942839","https://openalex.org/W2156876426","https://openalex.org/W2157331557","https://openalex.org/W2267186426","https://openalex.org/W2551087083","https://openalex.org/W2885999345","https://openalex.org/W2896457183","https://openalex.org/W2911946952","https://openalex.org/W2949117887","https://openalex.org/W2963341956","https://openalex.org/W2963403868","https://openalex.org/W2963769791","https://openalex.org/W2964110616","https://openalex.org/W2964304846","https://openalex.org/W2964308564","https://openalex.org/W2968848515","https://openalex.org/W2970266365","https://openalex.org/W3005724563","https://openalex.org/W3009808474","https://openalex.org/W3030163527","https://openalex.org/W3136767761","https://openalex.org/W4292779060","https://openalex.org/W4297734170","https://openalex.org/W4385245566"],"related_works":["https://openalex.org/W4379524643","https://openalex.org/W3029152356","https://openalex.org/W2469862403","https://openalex.org/W2367807705","https://openalex.org/W2166378262","https://openalex.org/W2060561905","https://openalex.org/W2035891203","https://openalex.org/W2011027677","https://openalex.org/W1986883493","https://openalex.org/W1417711376"],"abstract_inverted_index":{"Kernel":[0],"traces":[1],"are":[2],"sequences":[3],"of":[4,61,99,140,180],"low-level":[5],"events":[6],"comprising":[7],"a":[8,14,16,20,54,59,109,117,148,177],"name":[9],"and":[10,19,34,72,84,103,114,147,175],"multiple":[11],"arguments,":[12],"including":[13],"timestamp,":[15],"process":[17],"id,":[18],"return":[21],"value,":[22],"depending":[23],"on":[24,96,108,116,121,154],"the":[25,45,62,138,181],"event.":[26],"Their":[27],"analysis":[28],"helps":[29],"uncover":[30],"intrusions,":[31],"identify":[32],"bugs,":[33],"find":[35],"latency":[36],"causes.":[37],"However,":[38],"their":[39,67,173],"effectiveness":[40],"is":[41,77,85,89],"hindered":[42],"by":[43,91,124,150],"omitting":[44],"event":[46,63],"arguments.":[47],"To":[48],"remedy":[49],"this":[50],"limitation,":[51],"we":[52,133],"introduce":[53],"general":[55],"approach":[56],"to":[57,80,136,152,165,171],"learning":[58],"representation":[60,179],"names":[64],"along":[65],"with":[66],"arguments":[68],"using":[69],"both":[70],"embedding":[71],"encoding.":[73],"The":[74,87],"proposed":[75],"method":[76],"readily":[78],"applicable":[79],"most":[81],"neural":[82,143,169],"networks":[83,170],"task-agnostic.":[86],"benefit":[88],"quantified":[90],"conducting":[92],"an":[93,145],"ablation":[94],"study":[95],"three":[97],"groups":[98],"arguments:":[100],"call-related,":[101],"process-related,":[102],"time-related.":[104],"Experiments":[105],"were":[106,134],"conducted":[107],"novel":[110],"web":[111],"request":[112],"dataset":[113,119],"validated":[115],"second":[118],"collected":[120],"pre-production":[122],"servers":[123],"Ciena,":[125],"our":[126],"partnering":[127],"company.":[128],"By":[129],"leveraging":[130],"additional":[131],"information,":[132],"able":[135],"increase":[137],"performance":[139],"two":[141,155],"widely-used":[142],"networks,":[144],"LSTM":[146],"Transformer,":[149],"up":[151],"11.3%":[153],"unsupervised":[156],"language":[157],"modelling":[158],"tasks.":[159],"Such":[160],"tasks":[161],"may":[162],"be":[163],"used":[164],"detect":[166],"anomalies,":[167],"pre-train":[168],"improve":[172],"performance,":[174],"extract":[176],"contextual":[178],"events.":[182]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W3176366966","counts_by_year":[{"year":2024,"cited_by_count":2},{"year":2023,"cited_by_count":2},{"year":2022,"cited_by_count":1},{"year":2021,"cited_by_count":1}],"updated_date":"2024-11-27T11:36:19.962257","created_date":"2021-07-05"}