{"id":"https://openalex.org/W2982379404","doi":"https://doi.org/10.1109/msp.2019.2933846","title":"Neuroscience-Inspired Online Unsupervised Learning Algorithms: Artificial Neural Networks","display_name":"Neuroscience-Inspired Online Unsupervised Learning Algorithms: Artificial Neural Networks","publication_year":2019,"publication_date":"2019-10-30","ids":{"openalex":"https://openalex.org/W2982379404","doi":"https://doi.org/10.1109/msp.2019.2933846","mag":"2982379404"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/msp.2019.2933846","pdf_url":null,"source":{"id":"https://openalex.org/S120977877","display_name":"IEEE Signal Processing Magazine","issn_l":"1053-5888","issn":["1053-5888","1558-0792"],"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310319808","host_organization_name":"Institute of Electrical and Electronics Engineers","host_organization_lineage":["https://openalex.org/P4310319808"],"host_organization_lineage_names":["Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"journal-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5023195984","display_name":"Cengiz Pehlevan","orcid":"https://orcid.org/0000-0001-9767-6063"},"institutions":[{"id":"https://openalex.org/I136199984","display_name":"Harvard University","ror":"https://ror.org/03vek6s52","country_code":"US","type":"funder","lineage":["https://openalex.org/I136199984"]},{"id":"https://openalex.org/I4405392","display_name":"Bo\u011fazi\u00e7i University","ror":"https://ror.org/03z9tma90","country_code":"TR","type":"funder","lineage":["https://openalex.org/I4405392"]}],"countries":["TR","US"],"is_corresponding":false,"raw_author_name":"Cengiz Pehlevan","raw_affiliation_strings":["Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA","Physics and Electrical Engineering, Bogazici University, Istanbul, Turkey"],"affiliations":[{"raw_affiliation_string":"Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA","institution_ids":["https://openalex.org/I136199984"]},{"raw_affiliation_string":"Physics and Electrical Engineering, Bogazici University, Istanbul, Turkey","institution_ids":["https://openalex.org/I4405392"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5062874541","display_name":"Dmitri B. Chklovskii","orcid":"https://orcid.org/0000-0002-4781-2546"},"institutions":[{"id":"https://openalex.org/I63966007","display_name":"Massachusetts Institute of Technology","ror":"https://ror.org/042nb2s44","country_code":"US","type":"funder","lineage":["https://openalex.org/I63966007"]},{"id":"https://openalex.org/I4210153546","display_name":"Flatiron Health (United States)","ror":"https://ror.org/0508h6p74","country_code":"US","type":"funder","lineage":["https://openalex.org/I4210153546"]},{"id":"https://openalex.org/I4387153999","display_name":"Flatiron Institute","ror":"https://ror.org/00sekdz59","country_code":null,"type":"nonprofit","lineage":["https://openalex.org/I4210107338","https://openalex.org/I4387153999"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Dmitri B. Chklovskii","raw_affiliation_strings":["Neuroscience, Flatiron Institute, New York, NY, USA","Theoretical Physics, Massachusetts Institute of Technology, Cambridge"],"affiliations":[{"raw_affiliation_string":"Theoretical Physics, Massachusetts Institute of Technology, Cambridge","institution_ids":["https://openalex.org/I63966007"]},{"raw_affiliation_string":"Neuroscience, Flatiron Institute, New York, NY, USA","institution_ids":["https://openalex.org/I4210153546","https://openalex.org/I4387153999"]}]}],"institution_assertions":[],"countries_distinct_count":2,"institutions_distinct_count":5,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":3.659,"has_fulltext":false,"cited_by_count":47,"citation_normalized_percentile":{"value":0.999974,"is_in_top_1_percent":true,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":96,"max":97},"biblio":{"volume":"36","issue":"6","first_page":"88","last_page":"96"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10320","display_name":"Neural Networks and Applications","score":0.9965,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10320","display_name":"Neural Networks and Applications","score":0.9965,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10502","display_name":"Advanced Memory and Neural Computing","score":0.9936,"subfield":{"id":"https://openalex.org/subfields/2208","display_name":"Electrical and Electronic Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10429","display_name":"EEG and Brain-Computer Interfaces","score":0.9917,"subfield":{"id":"https://openalex.org/subfields/2805","display_name":"Cognitive Neuroscience"},"field":{"id":"https://openalex.org/fields/28","display_name":"Neuroscience"},"domain":{"id":"https://openalex.org/domains/1","display_name":"Life Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/backpropagation","display_name":"Backpropagation","score":0.4931776},{"id":"https://openalex.org/keywords/physical-neural-network","display_name":"Physical neural network","score":0.4188109}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.768208},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.7538358},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.71725214},{"id":"https://openalex.org/C2776608160","wikidata":"https://www.wikidata.org/wiki/Q4785462","display_name":"Natural (archaeology)","level":2,"score":0.5652017},{"id":"https://openalex.org/C177973122","wikidata":"https://www.wikidata.org/wiki/Q7860946","display_name":"Types of artificial neural networks","level":4,"score":0.5481985},{"id":"https://openalex.org/C81363708","wikidata":"https://www.wikidata.org/wiki/Q17084460","display_name":"Convolutional neural network","level":2,"score":0.49386078},{"id":"https://openalex.org/C155032097","wikidata":"https://www.wikidata.org/wiki/Q798503","display_name":"Backpropagation","level":3,"score":0.4931776},{"id":"https://openalex.org/C108583219","wikidata":"https://www.wikidata.org/wiki/Q197536","display_name":"Deep learning","level":2,"score":0.49298808},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.4759407},{"id":"https://openalex.org/C33766855","wikidata":"https://www.wikidata.org/wiki/Q7189618","display_name":"Physical neural network","level":5,"score":0.4188109},{"id":"https://openalex.org/C173079777","wikidata":"https://www.wikidata.org/wiki/Q4299350","display_name":"Nervous system network models","level":5,"score":0.41392523},{"id":"https://openalex.org/C175202392","wikidata":"https://www.wikidata.org/wiki/Q2434543","display_name":"Time delay neural network","level":3,"score":0.34735417},{"id":"https://openalex.org/C166957645","wikidata":"https://www.wikidata.org/wiki/Q23498","display_name":"Archaeology","level":1,"score":0.0},{"id":"https://openalex.org/C95457728","wikidata":"https://www.wikidata.org/wiki/Q309","display_name":"History","level":0,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/msp.2019.2933846","pdf_url":null,"source":{"id":"https://openalex.org/S120977877","display_name":"IEEE Signal Processing Magazine","issn_l":"1053-5888","issn":["1053-5888","1558-0792"],"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310319808","host_organization_name":"Institute of Electrical and Electronics Engineers","host_organization_lineage":["https://openalex.org/P4310319808"],"host_organization_lineage_names":["Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[{"funder":"https://openalex.org/F4320307102","funder_display_name":"Intel Corporation","award_id":null}],"datasets":[],"versions":[],"referenced_works_count":44,"referenced_works":["https://openalex.org/W1504886279","https://openalex.org/W1555711139","https://openalex.org/W1902027874","https://openalex.org/W1976440390","https://openalex.org/W2009642296","https://openalex.org/W2038506683","https://openalex.org/W2040870580","https://openalex.org/W2105464873","https://openalex.org/W2118858186","https://openalex.org/W2137234026","https://openalex.org/W2141681031","https://openalex.org/W2142387771","https://openalex.org/W2144902422","https://openalex.org/W2145889472","https://openalex.org/W2164616133","https://openalex.org/W2165594460","https://openalex.org/W2169548727","https://openalex.org/W2187994211","https://openalex.org/W2263039277","https://openalex.org/W2432567885","https://openalex.org/W2555690212","https://openalex.org/W2610360795","https://openalex.org/W2612361954","https://openalex.org/W2620603814","https://openalex.org/W2665389262","https://openalex.org/W2735683573","https://openalex.org/W2760165843","https://openalex.org/W2765959891","https://openalex.org/W2766363025","https://openalex.org/W2783525259","https://openalex.org/W2792838886","https://openalex.org/W2805950715","https://openalex.org/W2885708503","https://openalex.org/W2951464485","https://openalex.org/W2963184208","https://openalex.org/W2963493474","https://openalex.org/W2964083467","https://openalex.org/W2964156132","https://openalex.org/W2964316122","https://openalex.org/W3100315927","https://openalex.org/W3101538682","https://openalex.org/W3102303919","https://openalex.org/W4206519735","https://openalex.org/W4302087481"],"related_works":["https://openalex.org/W4387656273","https://openalex.org/W4292953721","https://openalex.org/W3109717595","https://openalex.org/W2950022897","https://openalex.org/W2765937093","https://openalex.org/W2104698839","https://openalex.org/W1973323485","https://openalex.org/W180587397","https://openalex.org/W1595652908","https://openalex.org/W1584270863"],"abstract_inverted_index":{"Inventors":[0],"of":[1,54,79],"the":[2,115],"original":[3],"artificial":[4,75],"neural":[5],"networks":[6],"(ANNs)":[7],"derived":[8],"their":[9],"inspiration":[10],"from":[11,87],"biology":[12],"[1].":[13],"However,":[14],"today,":[15],"most":[16],"ANNs,":[17],"such":[18,34,47],"as":[19],"backpropagation-based":[20],"convolutional":[21],"deeplearning":[22],"networks,":[23],"resemble":[24],"natural":[25,50,55,92,98,119],"NNs":[26,56,99],"only":[27],"superficially.":[28],"Given":[29],"that,":[30],"on":[31,68],"some":[32,102],"tasks,":[33],"ANNs":[35,84,106],"achieve":[36,96],"human":[37],"or":[38],"even":[39],"superhuman":[40],"performance,":[41],"why":[42,110],"should":[43],"one":[44],"care":[45],"about":[46],"dissimilarity":[48],"with":[49],"NNs?":[51],"The":[52],"algorithms":[53,116],"are":[57,85],"relevant":[58],"if":[59],"one's":[60],"goal":[61,90],"is":[62,109],"not":[63],"just":[64],"to":[65,72,113],"outperform":[66],"humans":[67],"certain":[69],"tasks":[70],"but":[71],"develop":[73],"general-purpose":[74],"intelligence":[76],"rivaling":[77],"that":[78,105],"a":[80],"human.":[81],"As":[82],"contemporary":[83],"far":[86],"achieving":[88],"this":[89],"and":[91],"NNs,":[93],"by":[94,118],"definition,":[95],"it,":[97],"must":[100],"contain":[101],"\"secret":[103],"sauce\"":[104],"lack.":[107],"This":[108],"we":[111],"need":[112],"understand":[114],"implemented":[117],"NNs.":[120]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2982379404","counts_by_year":[{"year":2025,"cited_by_count":2},{"year":2024,"cited_by_count":10},{"year":2023,"cited_by_count":9},{"year":2022,"cited_by_count":5},{"year":2021,"cited_by_count":10},{"year":2020,"cited_by_count":10},{"year":2019,"cited_by_count":1}],"updated_date":"2025-03-23T08:02:48.546037","created_date":"2019-11-08"}