{"id":"https://openalex.org/W2182125439","doi":"https://doi.org/10.1109/mmsp.2015.7340876","title":"Fast learning discriminative dictionaries for large-scale visual recognition","display_name":"Fast learning discriminative dictionaries for large-scale visual recognition","publication_year":2015,"publication_date":"2015-10-01","ids":{"openalex":"https://openalex.org/W2182125439","doi":"https://doi.org/10.1109/mmsp.2015.7340876","mag":"2182125439"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/mmsp.2015.7340876","pdf_url":null,"source":{"id":"https://openalex.org/S4363605768","display_name":"2022 IEEE 24th International Workshop on Multimedia Signal Processing (MMSP)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5103027184","display_name":"Tianyi Zhao","orcid":"https://orcid.org/0000-0002-6285-6846"},"institutions":[{"id":"https://openalex.org/I102149020","display_name":"University of North Carolina at Charlotte","ror":"https://ror.org/04dawnj30","country_code":"US","type":"funder","lineage":["https://openalex.org/I102149020"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Tianyi Zhao","raw_affiliation_strings":["Department of Computer Science, University of North Carolina at Charlotte, Charlotte, NC"],"affiliations":[{"raw_affiliation_string":"Department of Computer Science, University of North Carolina at Charlotte, Charlotte, NC","institution_ids":["https://openalex.org/I102149020"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5076485255","display_name":"Yanyun Qu","orcid":"https://orcid.org/0000-0002-8926-4162"},"institutions":[{"id":"https://openalex.org/I102149020","display_name":"University of North Carolina at Charlotte","ror":"https://ror.org/04dawnj30","country_code":"US","type":"funder","lineage":["https://openalex.org/I102149020"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"None Yanyun Qu","raw_affiliation_strings":["Department of Computer Science, University of North Carolina at Charlotte, Charlotte, NC"],"affiliations":[{"raw_affiliation_string":"Department of Computer Science, University of North Carolina at Charlotte, Charlotte, NC","institution_ids":["https://openalex.org/I102149020"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5100728564","display_name":"Jianping Fan","orcid":"https://orcid.org/0000-0002-4923-0910"},"institutions":[{"id":"https://openalex.org/I102149020","display_name":"University of North Carolina at Charlotte","ror":"https://ror.org/04dawnj30","country_code":"US","type":"funder","lineage":["https://openalex.org/I102149020"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Jianping Fan","raw_affiliation_strings":["Department of Computer Science, University of North Carolina at Charlotte, Charlotte, NC"],"affiliations":[{"raw_affiliation_string":"Department of Computer Science, University of North Carolina at Charlotte, Charlotte, NC","institution_ids":["https://openalex.org/I102149020"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.0,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":66},"biblio":{"volume":null,"issue":null,"first_page":"1","last_page":"6"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10627","display_name":"Advanced Image and Video Retrieval Techniques","score":0.9997,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10627","display_name":"Advanced Image and Video Retrieval Techniques","score":0.9997,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10824","display_name":"Image Retrieval and Classification Techniques","score":0.9978,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10689","display_name":"Remote-Sensing Image Classification","score":0.9976,"subfield":{"id":"https://openalex.org/subfields/2214","display_name":"Media Technology"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/discriminative-model","display_name":"Discriminative model","score":0.78151226},{"id":"https://openalex.org/keywords/scale-invariant-feature-transform","display_name":"Scale-invariant feature transform","score":0.5991079},{"id":"https://openalex.org/keywords/convolution","display_name":"Convolution (computer science)","score":0.5231427},{"id":"https://openalex.org/keywords/contextual-image-classification","display_name":"Contextual image classification","score":0.52174294},{"id":"https://openalex.org/keywords/feature","display_name":"Feature (linguistics)","score":0.51052916},{"id":"https://openalex.org/keywords/similarity","display_name":"Similarity (geometry)","score":0.4643754},{"id":"https://openalex.org/keywords/representation","display_name":"Representation","score":0.43263963}],"concepts":[{"id":"https://openalex.org/C97931131","wikidata":"https://www.wikidata.org/wiki/Q5282087","display_name":"Discriminative model","level":2,"score":0.78151226},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.7610881},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.74590683},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.7305205},{"id":"https://openalex.org/C81363708","wikidata":"https://www.wikidata.org/wiki/Q17084460","display_name":"Convolutional neural network","level":2,"score":0.61157364},{"id":"https://openalex.org/C61265191","wikidata":"https://www.wikidata.org/wiki/Q767770","display_name":"Scale-invariant feature transform","level":3,"score":0.5991079},{"id":"https://openalex.org/C45347329","wikidata":"https://www.wikidata.org/wiki/Q5166604","display_name":"Convolution (computer science)","level":3,"score":0.5231427},{"id":"https://openalex.org/C75294576","wikidata":"https://www.wikidata.org/wiki/Q5165192","display_name":"Contextual image classification","level":3,"score":0.52174294},{"id":"https://openalex.org/C2776401178","wikidata":"https://www.wikidata.org/wiki/Q12050496","display_name":"Feature (linguistics)","level":2,"score":0.51052916},{"id":"https://openalex.org/C103278499","wikidata":"https://www.wikidata.org/wiki/Q254465","display_name":"Similarity (geometry)","level":3,"score":0.4643754},{"id":"https://openalex.org/C52622490","wikidata":"https://www.wikidata.org/wiki/Q1026626","display_name":"Feature extraction","level":2,"score":0.4333465},{"id":"https://openalex.org/C2776359362","wikidata":"https://www.wikidata.org/wiki/Q2145286","display_name":"Representation (politics)","level":3,"score":0.43263963},{"id":"https://openalex.org/C115961682","wikidata":"https://www.wikidata.org/wiki/Q860623","display_name":"Image (mathematics)","level":2,"score":0.42795438},{"id":"https://openalex.org/C1667742","wikidata":"https://www.wikidata.org/wiki/Q10927554","display_name":"Image retrieval","level":3,"score":0.42038625},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.35304627},{"id":"https://openalex.org/C41895202","wikidata":"https://www.wikidata.org/wiki/Q8162","display_name":"Linguistics","level":1,"score":0.0},{"id":"https://openalex.org/C138885662","wikidata":"https://www.wikidata.org/wiki/Q5891","display_name":"Philosophy","level":0,"score":0.0},{"id":"https://openalex.org/C94625758","wikidata":"https://www.wikidata.org/wiki/Q7163","display_name":"Politics","level":2,"score":0.0},{"id":"https://openalex.org/C17744445","wikidata":"https://www.wikidata.org/wiki/Q36442","display_name":"Political science","level":0,"score":0.0},{"id":"https://openalex.org/C199539241","wikidata":"https://www.wikidata.org/wiki/Q7748","display_name":"Law","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/mmsp.2015.7340876","pdf_url":null,"source":{"id":"https://openalex.org/S4363605768","display_name":"2022 IEEE 24th International Workshop on Multimedia Signal Processing (MMSP)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"display_name":"Reduced inequalities","id":"https://metadata.un.org/sdg/10","score":0.75}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":32,"referenced_works":["https://openalex.org/W1625255723","https://openalex.org/W1992405901","https://openalex.org/W1994207675","https://openalex.org/W1996287810","https://openalex.org/W2011181254","https://openalex.org/W2027922120","https://openalex.org/W2028349405","https://openalex.org/W2033468335","https://openalex.org/W2038721957","https://openalex.org/W2045737896","https://openalex.org/W2052800689","https://openalex.org/W2082855665","https://openalex.org/W2097018403","https://openalex.org/W2100567627","https://openalex.org/W2101285851","https://openalex.org/W2102185064","https://openalex.org/W2104170135","https://openalex.org/W2129812935","https://openalex.org/W2134665698","https://openalex.org/W2142747154","https://openalex.org/W2142940228","https://openalex.org/W2148780922","https://openalex.org/W2151103935","https://openalex.org/W2152322845","https://openalex.org/W2155144632","https://openalex.org/W2157065343","https://openalex.org/W2157785665","https://openalex.org/W2161969291","https://openalex.org/W2163605009","https://openalex.org/W2171896402","https://openalex.org/W3144858519","https://openalex.org/W4235505822"],"related_works":["https://openalex.org/W3034955165","https://openalex.org/W2761785940","https://openalex.org/W2391926582","https://openalex.org/W2316074893","https://openalex.org/W2247121321","https://openalex.org/W2129933262","https://openalex.org/W2094920358","https://openalex.org/W2087391438","https://openalex.org/W2041448692","https://openalex.org/W1966831329"],"abstract_inverted_index":{"In":[0],"this":[1],"paper,":[2],"we":[3,94],"aim":[4],"at":[5],"improving":[6],"the":[7,30,40,45,49,53,57,66,76,85,89,98,103,113,117,130,139,144,151],"discriminative":[8],"jointly":[9],"dictionaries":[10],"for":[11,21,122],"large-scale":[12],"image":[13,22,123],"classification.":[14,23,124,154],"Sparse":[15],"representation":[16,119],"is":[17,26,36,62,72,120,133],"a":[18],"popular":[19],"tool":[20],"Visual":[24],"dictionary":[25,61,81],"very":[27],"critical":[28],"to":[29,39,65,74,96,108],"classification":[31,141],"performance.":[32],"A":[33],"visual":[34,41,67],"tree":[35],"constructed":[37],"according":[38,64],"similarity,":[42],"in":[43],"which":[44,83],"higher":[46],"layer":[47,55],"represents":[48,56],"coarser":[50],"membership":[51],"and":[52,88,112,138],"lower":[54],"finer":[58],"membership.":[59],"Jointly":[60],"learned":[63,101],"tree.":[68],"Bregman":[69,145],"iterative":[70],"algorithm":[71,147],"implemented":[73],"solve":[75],"optimal":[77],"problem":[78],"of":[79,116,153],"joint":[80],"learning,":[82],"makes":[84],"solution":[86],"accurate":[87],"running":[90],"speed":[91],"fast.":[92],"Furthermore,":[93],"try":[95],"implement":[97],"pre-trained":[99],"features":[100],"from":[102],"convolution":[104],"neural":[105],"network":[106],"(CNN)":[107],"represent":[109],"an":[110],"image,":[111],"residual":[114],"error":[115],"sparse":[118],"utilized":[121],"The":[125],"experimental":[126],"results":[127],"demonstrate":[128],"that":[129],"CNN":[131],"feature":[132],"more":[134],"distinct":[135],"than":[136],"SIFT,":[137],"hierarchical":[140],"framework":[142],"with":[143],"iteration":[146],"can":[148],"greatly":[149],"improve":[150],"performance":[152]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2182125439","counts_by_year":[],"updated_date":"2025-02-03T16:53:53.852495","created_date":"2016-06-24"}