{"id":"https://openalex.org/W2756770081","doi":"https://doi.org/10.1109/mmar.2017.8046978","title":"Deep neural networks approach to skin lesions classification \u2014 A comparative analysis","display_name":"Deep neural networks approach to skin lesions classification \u2014 A comparative analysis","publication_year":2017,"publication_date":"2017-08-01","ids":{"openalex":"https://openalex.org/W2756770081","doi":"https://doi.org/10.1109/mmar.2017.8046978","mag":"2756770081"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/mmar.2017.8046978","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5006441430","display_name":"Arkadiusz Kwasigroch","orcid":"https://orcid.org/0000-0002-7803-0010"},"institutions":[{"id":"https://openalex.org/I169333911","display_name":"Gda\u0144sk University of Technology","ror":"https://ror.org/006x4sc24","country_code":"PL","type":"education","lineage":["https://openalex.org/I169333911"]}],"countries":["PL"],"is_corresponding":false,"raw_author_name":"Arkadiusz Kwasigroch","raw_affiliation_strings":["Electrical and Control Engineering Department, Gdansk University of Technology, Poland"],"affiliations":[{"raw_affiliation_string":"Electrical and Control Engineering Department, Gdansk University of Technology, Poland","institution_ids":["https://openalex.org/I169333911"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5081254082","display_name":"Agnieszka Miko\u0142ajczyk","orcid":"https://orcid.org/0000-0002-8003-6243"},"institutions":[{"id":"https://openalex.org/I169333911","display_name":"Gda\u0144sk University of Technology","ror":"https://ror.org/006x4sc24","country_code":"PL","type":"education","lineage":["https://openalex.org/I169333911"]}],"countries":["PL"],"is_corresponding":false,"raw_author_name":"Agnieszka Mikolajczyk","raw_affiliation_strings":["Electrical and Control Engineering Department, Gdansk University of Technology, Poland"],"affiliations":[{"raw_affiliation_string":"Electrical and Control Engineering Department, Gdansk University of Technology, Poland","institution_ids":["https://openalex.org/I169333911"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5034493946","display_name":"Micha\u0142 Grochowski","orcid":"https://orcid.org/0000-0002-2453-2410"},"institutions":[{"id":"https://openalex.org/I169333911","display_name":"Gda\u0144sk University of Technology","ror":"https://ror.org/006x4sc24","country_code":"PL","type":"education","lineage":["https://openalex.org/I169333911"]}],"countries":["PL"],"is_corresponding":false,"raw_author_name":"Michal Grochowski","raw_affiliation_strings":["Electrical and Control Engineering Department, Gdansk University of Technology, Poland"],"affiliations":[{"raw_affiliation_string":"Electrical and Control Engineering Department, Gdansk University of Technology, Poland","institution_ids":["https://openalex.org/I169333911"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":3.81,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":67,"citation_normalized_percentile":{"value":0.867089,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":97,"max":98},"biblio":{"volume":null,"issue":null,"first_page":"1069","last_page":"1074"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10392","display_name":"Cutaneous Melanoma Detection and Management","score":0.9995,"subfield":{"id":"https://openalex.org/subfields/2730","display_name":"Oncology"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}},"topics":[{"id":"https://openalex.org/T10392","display_name":"Cutaneous Melanoma Detection and Management","score":0.9995,"subfield":{"id":"https://openalex.org/subfields/2730","display_name":"Oncology"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}},{"id":"https://openalex.org/T10862","display_name":"AI in cancer detection","score":0.9815,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12357","display_name":"Digital Media Forensic Detection","score":0.9513,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/contextual-image-classification","display_name":"Contextual image classification","score":0.5150373},{"id":"https://openalex.org/keywords/residual-neural-network","display_name":"Residual neural network","score":0.48921657},{"id":"https://openalex.org/keywords/deep-neural-networks","display_name":"Deep Neural Networks","score":0.43490022}],"concepts":[{"id":"https://openalex.org/C81363708","wikidata":"https://www.wikidata.org/wiki/Q17084460","display_name":"Convolutional neural network","level":2,"score":0.8457409},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.79192054},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.73061925},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.6983887},{"id":"https://openalex.org/C12267149","wikidata":"https://www.wikidata.org/wiki/Q282453","display_name":"Support vector machine","level":2,"score":0.68677044},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.56717986},{"id":"https://openalex.org/C108583219","wikidata":"https://www.wikidata.org/wiki/Q197536","display_name":"Deep learning","level":2,"score":0.5588203},{"id":"https://openalex.org/C155512373","wikidata":"https://www.wikidata.org/wiki/Q287450","display_name":"Residual","level":2,"score":0.5561037},{"id":"https://openalex.org/C75294576","wikidata":"https://www.wikidata.org/wiki/Q5165192","display_name":"Contextual image classification","level":3,"score":0.5150373},{"id":"https://openalex.org/C2944601119","wikidata":"https://www.wikidata.org/wiki/Q43744058","display_name":"Residual neural network","level":3,"score":0.48921657},{"id":"https://openalex.org/C2984842247","wikidata":"https://www.wikidata.org/wiki/Q197536","display_name":"Deep neural networks","level":3,"score":0.43490022},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.34179467},{"id":"https://openalex.org/C115961682","wikidata":"https://www.wikidata.org/wiki/Q860623","display_name":"Image (mathematics)","level":2,"score":0.30544397},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.08809951}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/mmar.2017.8046978","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":19,"referenced_works":["https://openalex.org/W1686810756","https://openalex.org/W1836465849","https://openalex.org/W2015861736","https://openalex.org/W2036874319","https://openalex.org/W2095705004","https://openalex.org/W2101234009","https://openalex.org/W2117539524","https://openalex.org/W2126598020","https://openalex.org/W2163605009","https://openalex.org/W2194775991","https://openalex.org/W2284539364","https://openalex.org/W2328948008","https://openalex.org/W2384495648","https://openalex.org/W2557738935","https://openalex.org/W2623468184","https://openalex.org/W2624171432","https://openalex.org/W2919115771","https://openalex.org/W2949117887","https://openalex.org/W3142708931"],"related_works":["https://openalex.org/W4383097772","https://openalex.org/W4300939921","https://openalex.org/W3213976941","https://openalex.org/W3196952692","https://openalex.org/W2990636717","https://openalex.org/W2984708981","https://openalex.org/W2964350391","https://openalex.org/W2897517148","https://openalex.org/W2755231872","https://openalex.org/W2274287116"],"abstract_inverted_index":{"The":[0,22,65,105],"paper":[1],"presents":[2],"the":[3,8,19,27,54,60,71,98,108,114],"results":[4],"of":[5,10,18,31,45,56,73,75,87,91,96,100,107],"research":[6,66],"on":[7,26],"use":[9,72],"Deep":[11],"Neural":[12,38],"Networks":[13,39,51],"(DNN)":[14],"for":[15,33],"automatic":[16],"classification":[17],"skin":[20,81],"lesions.":[21],"authors":[23],"have":[24],"focused":[25],"most":[28],"effective":[29],"kind":[30],"DNNs":[32],"image":[34],"processing,":[35],"namely":[36],"Convolutional":[37],"(CNN).":[40],"In":[41],"particular,":[42],"three":[43],"kinds":[44],"CNN":[46,58,109],"were":[47],"analyzed:":[48],"VGG19,":[49],"Residual":[50],"(ResNet)":[52],"and":[53,84,117],"hybrid":[55],"VGG19":[57],"with":[59,70,111],"Support":[61],"Vector":[62],"Machine":[63],"(SVM).":[64],"was":[67,103,119],"carried":[68],"out":[69],"database":[74],"over":[76],"10":[77],"000":[78],"images":[79,92],"representing":[80,93],"lesions:":[82],"benign":[83],"malignant.":[85],"Because":[86],"an":[88],"uneven":[89],"number":[90],"different":[94],"classes":[95],"lesions,":[97],"up-sampling":[99],"underrepresented":[101],"class":[102],"applied.":[104],"comparison":[106],"structures":[110],"respect":[112],"to":[113],"accuracy,":[115],"sensitivity":[116],"specificity":[118],"performed":[120],"using":[121],"k-fold":[122],"validation":[123],"method.":[124]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2756770081","counts_by_year":[{"year":2024,"cited_by_count":6},{"year":2023,"cited_by_count":12},{"year":2022,"cited_by_count":14},{"year":2021,"cited_by_count":11},{"year":2020,"cited_by_count":9},{"year":2019,"cited_by_count":11},{"year":2018,"cited_by_count":3}],"updated_date":"2024-12-13T15:55:00.455526","created_date":"2017-10-06"}