{"id":"https://openalex.org/W3091636705","doi":"https://doi.org/10.1109/mits.2020.3014131","title":"Predicting Vacant Parking Space Availability: A Long Short-Term Memory Approach","display_name":"Predicting Vacant Parking Space Availability: A Long Short-Term Memory Approach","publication_year":2020,"publication_date":"2020-10-01","ids":{"openalex":"https://openalex.org/W3091636705","doi":"https://doi.org/10.1109/mits.2020.3014131","mag":"3091636705"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/mits.2020.3014131","pdf_url":null,"source":{"id":"https://openalex.org/S131000621","display_name":"IEEE Intelligent Transportation Systems Magazine","issn_l":"1939-1390","issn":["1939-1390","1941-1197"],"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310319808","host_organization_name":"Institute of Electrical and Electronics Engineers","host_organization_lineage":["https://openalex.org/P4310319808"],"host_organization_lineage_names":["Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"journal-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5055314661","display_name":"Junkai Fan","orcid":null},"institutions":[{"id":"https://openalex.org/I146620803","display_name":"Wenzhou University","ror":"https://ror.org/020hxh324","country_code":"CN","type":"funder","lineage":["https://openalex.org/I146620803"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Junkai Fan","raw_affiliation_strings":["College of Computer Science &","College of Computer Science & Artificial Intelligence and the Innovation Center for Intelligent Networking, Wenzhou University, China"],"affiliations":[{"raw_affiliation_string":"College of Computer Science & Artificial Intelligence and the Innovation Center for Intelligent Networking, Wenzhou University, China","institution_ids":["https://openalex.org/I146620803"]},{"raw_affiliation_string":"College of Computer Science &","institution_ids":[]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5072517057","display_name":"Qian Hu","orcid":"https://orcid.org/0000-0002-7162-8220"},"institutions":[{"id":"https://openalex.org/I146620803","display_name":"Wenzhou University","ror":"https://ror.org/020hxh324","country_code":"CN","type":"funder","lineage":["https://openalex.org/I146620803"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Qian Hu","raw_affiliation_strings":["College of Computer Science &","College of Computer Science & Artificial Intelligence and the Innovation Center for Intelligent Networking, Wenzhou University, China"],"affiliations":[{"raw_affiliation_string":"College of Computer Science & Artificial Intelligence and the Innovation Center for Intelligent Networking, Wenzhou University, China","institution_ids":["https://openalex.org/I146620803"]},{"raw_affiliation_string":"College of Computer Science &","institution_ids":[]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5063096622","display_name":"Yingying Xu","orcid":"https://orcid.org/0000-0002-3185-811X"},"institutions":[{"id":"https://openalex.org/I146620803","display_name":"Wenzhou University","ror":"https://ror.org/020hxh324","country_code":"CN","type":"funder","lineage":["https://openalex.org/I146620803"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Yingying Xu","raw_affiliation_strings":["College of Computer Science &","College of Computer Science & Artificial Intelligence and the Innovation Center for Intelligent Networking, Wenzhou University, China"],"affiliations":[{"raw_affiliation_string":"College of Computer Science & Artificial Intelligence and the Innovation Center for Intelligent Networking, Wenzhou University, China","institution_ids":["https://openalex.org/I146620803"]},{"raw_affiliation_string":"College of Computer Science &","institution_ids":[]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5047527610","display_name":"Zhenzhou Tang","orcid":"https://orcid.org/0000-0001-7997-6038"},"institutions":[{"id":"https://openalex.org/I146620803","display_name":"Wenzhou University","ror":"https://ror.org/020hxh324","country_code":"CN","type":"funder","lineage":["https://openalex.org/I146620803"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Zhenzhou Tang","raw_affiliation_strings":["College of Computer Science &","College of Computer Science & Artificial Intelligence and the Innovation Center for Intelligent Networking, Wenzhou University, China"],"affiliations":[{"raw_affiliation_string":"College of Computer Science & Artificial Intelligence and the Innovation Center for Intelligent Networking, Wenzhou University, China","institution_ids":["https://openalex.org/I146620803"]},{"raw_affiliation_string":"College of Computer Science &","institution_ids":[]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":2.036,"has_fulltext":false,"cited_by_count":26,"citation_normalized_percentile":{"value":0.833191,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":93,"max":94},"biblio":{"volume":"14","issue":"2","first_page":"129","last_page":"143"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T12546","display_name":"Smart Parking Systems Research","score":1.0,"subfield":{"id":"https://openalex.org/subfields/2215","display_name":"Building and Construction"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T12546","display_name":"Smart Parking Systems Research","score":1.0,"subfield":{"id":"https://openalex.org/subfields/2215","display_name":"Building and Construction"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10524","display_name":"Traffic control and management","score":0.9876,"subfield":{"id":"https://openalex.org/subfields/2207","display_name":"Control and Systems Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11344","display_name":"Traffic Prediction and Management Techniques","score":0.9835,"subfield":{"id":"https://openalex.org/subfields/2215","display_name":"Building and Construction"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/benchmark","display_name":"Benchmark (surveying)","score":0.61431944},{"id":"https://openalex.org/keywords/parking-space","display_name":"Parking space","score":0.58705723},{"id":"https://openalex.org/keywords/autoencoder","display_name":"Autoencoder","score":0.53191704}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.6573198},{"id":"https://openalex.org/C185798385","wikidata":"https://www.wikidata.org/wiki/Q1161707","display_name":"Benchmark (surveying)","level":2,"score":0.61431944},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.60926425},{"id":"https://openalex.org/C2994392017","wikidata":"https://www.wikidata.org/wiki/Q1433633","display_name":"Parking space","level":2,"score":0.58705723},{"id":"https://openalex.org/C26517878","wikidata":"https://www.wikidata.org/wiki/Q228039","display_name":"Key (lock)","level":2,"score":0.57904476},{"id":"https://openalex.org/C12267149","wikidata":"https://www.wikidata.org/wiki/Q282453","display_name":"Support vector machine","level":2,"score":0.53605413},{"id":"https://openalex.org/C101738243","wikidata":"https://www.wikidata.org/wiki/Q786435","display_name":"Autoencoder","level":3,"score":0.53191704},{"id":"https://openalex.org/C61797465","wikidata":"https://www.wikidata.org/wiki/Q1188986","display_name":"Term (time)","level":2,"score":0.4870177},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.46589363},{"id":"https://openalex.org/C207512268","wikidata":"https://www.wikidata.org/wiki/Q3074551","display_name":"Traffic flow (computer networking)","level":2,"score":0.46163392},{"id":"https://openalex.org/C147168706","wikidata":"https://www.wikidata.org/wiki/Q1457734","display_name":"Recurrent neural network","level":3,"score":0.45687333},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.44428715},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.4016745},{"id":"https://openalex.org/C127413603","wikidata":"https://www.wikidata.org/wiki/Q11023","display_name":"Engineering","level":0,"score":0.20943543},{"id":"https://openalex.org/C22212356","wikidata":"https://www.wikidata.org/wiki/Q775325","display_name":"Transport engineering","level":1,"score":0.20919234},{"id":"https://openalex.org/C31258907","wikidata":"https://www.wikidata.org/wiki/Q1301371","display_name":"Computer network","level":1,"score":0.08366358},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C38652104","wikidata":"https://www.wikidata.org/wiki/Q3510521","display_name":"Computer security","level":1,"score":0.0},{"id":"https://openalex.org/C13280743","wikidata":"https://www.wikidata.org/wiki/Q131089","display_name":"Geodesy","level":1,"score":0.0},{"id":"https://openalex.org/C62520636","wikidata":"https://www.wikidata.org/wiki/Q944","display_name":"Quantum mechanics","level":1,"score":0.0},{"id":"https://openalex.org/C205649164","wikidata":"https://www.wikidata.org/wiki/Q1071","display_name":"Geography","level":0,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/mits.2020.3014131","pdf_url":null,"source":{"id":"https://openalex.org/S131000621","display_name":"IEEE Intelligent Transportation Systems Magazine","issn_l":"1939-1390","issn":["1939-1390","1941-1197"],"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310319808","host_organization_name":"Institute of Electrical and Electronics Engineers","host_organization_lineage":["https://openalex.org/P4310319808"],"host_organization_lineage_names":["Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"id":"https://metadata.un.org/sdg/11","score":0.44,"display_name":"Sustainable cities and communities"}],"grants":[{"funder":"https://openalex.org/F4320338464","funder_display_name":"Natural Science Foundation of Zhejiang Province","award_id":"LZ20F010008"},{"funder":"https://openalex.org/F4320338464","funder_display_name":"Natural Science Foundation of Zhejiang Province","award_id":"LQ16G010006"}],"datasets":[],"versions":[],"referenced_works_count":42,"referenced_works":["https://openalex.org/W1508065755","https://openalex.org/W1522301498","https://openalex.org/W1582119448","https://openalex.org/W1615615219","https://openalex.org/W1966690449","https://openalex.org/W2008300660","https://openalex.org/W2028489066","https://openalex.org/W2036785686","https://openalex.org/W2038849166","https://openalex.org/W2043074941","https://openalex.org/W2064675550","https://openalex.org/W2091453093","https://openalex.org/W2118160468","https://openalex.org/W2152412884","https://openalex.org/W2295038166","https://openalex.org/W2474603704","https://openalex.org/W2540276407","https://openalex.org/W2545300838","https://openalex.org/W2553165053","https://openalex.org/W2560880226","https://openalex.org/W2561953756","https://openalex.org/W2609044178","https://openalex.org/W2740570963","https://openalex.org/W2754252319","https://openalex.org/W2792244604","https://openalex.org/W2799831917","https://openalex.org/W2805072236","https://openalex.org/W2808910047","https://openalex.org/W2809334854","https://openalex.org/W2889294691","https://openalex.org/W2891809631","https://openalex.org/W2899220442","https://openalex.org/W2910886069","https://openalex.org/W2916664939","https://openalex.org/W2963086459","https://openalex.org/W2969279223","https://openalex.org/W2989697417","https://openalex.org/W2989719163","https://openalex.org/W3011277499","https://openalex.org/W3023520985","https://openalex.org/W3101840568","https://openalex.org/W749924253"],"related_works":["https://openalex.org/W4386815338","https://openalex.org/W4297051394","https://openalex.org/W3131327266","https://openalex.org/W3013693939","https://openalex.org/W2803255133","https://openalex.org/W2752972570","https://openalex.org/W2734887215","https://openalex.org/W2566616303","https://openalex.org/W2159052453","https://openalex.org/W2145836866"],"abstract_inverted_index":{"The":[0,64,73],"accurate":[1],"prediction":[2,74],"of":[3,51,59,67],"vacant":[4,53],"parking":[5,54,61,123,161],"space":[6],"availability":[7,62],"is":[8,76],"becoming":[9],"increasingly":[10],"essential":[11],"for":[12],"assisting":[13],"drivers":[14],"to":[15,18,47,133],"determine":[16],"where":[17],"park":[19],"in":[20,158],"advance.":[21],"It":[22],"helps":[23],"ease":[24],"traffic":[25,129,165],"pressure":[26],"and":[27,31,103,128,140],"reduce":[28],"gas":[29],"emission":[30],"pollution.":[32],"This":[33],"article":[34],"proposes":[35],"a":[36,85,91,94,98,104,159],"novel":[37],"multistep":[38,149],"long":[39],"short-term":[40],"memory":[41],"recurrent":[42,87],"neural":[43,89,101],"network":[44],"(LSTM-NN)":[45],"model":[46,69,75,151],"predict":[48],"the":[49,52,57,68,135,147,154],"number":[50],"spaces":[55],"on":[56,138],"basis":[58],"historical":[60],"information.":[63],"key":[65,108],"parameters":[66,109],"are":[70,110],"deeply":[71],"optimized.":[72],"fully":[77],"benchmarked":[78],"with":[79,117,125,163],"five":[80],"well-known":[81],"machine":[82],"learning":[83],"models—i.e.":[84],"gated":[86],"units":[88],"network,":[90,102],"stacked":[92],"autoencoder,":[93],"support":[95],"vector":[96],"regression,":[97],"back":[99],"propagation":[100],"k-nearest":[105],"neighbor":[106],"algorithm—whose":[107],"sufficiently":[111],"optimized":[112],"as":[113],"well.":[114],"Adequate":[115],"experiments":[116],"practical":[118],"data":[119],"collected":[120],"from":[121],"two":[122],"lots":[124],"various":[126],"capacities":[127],"flows":[130],"were":[131],"conducted":[132],"evaluate":[134],"models’":[136],"performances":[137],"short-":[139],"long-term":[141],"predictions.":[142],"Experimental":[143],"results":[144],"show":[145],"that":[146],"proposed":[148],"LSTM-NN":[150],"outperforms":[152],"all":[153],"benchmark":[155],"models,":[156],"especially":[157],"commercial":[160],"lot":[162],"heavy":[164],"flow.":[166]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W3091636705","counts_by_year":[{"year":2025,"cited_by_count":2},{"year":2024,"cited_by_count":7},{"year":2023,"cited_by_count":10},{"year":2022,"cited_by_count":4},{"year":2021,"cited_by_count":3}],"updated_date":"2025-04-19T07:27:40.535372","created_date":"2020-10-08"}