{"id":"https://openalex.org/W4225688943","doi":"https://doi.org/10.1109/milcom52596.2021.9653139","title":"Preventing Machine Learning Poisoning Attacks Using Authentication and Provenance","display_name":"Preventing Machine Learning Poisoning Attacks Using Authentication and Provenance","publication_year":2021,"publication_date":"2021-11-29","ids":{"openalex":"https://openalex.org/W4225688943","doi":"https://doi.org/10.1109/milcom52596.2021.9653139"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/milcom52596.2021.9653139","pdf_url":null,"source":{"id":"https://openalex.org/S4363608114","display_name":"MILCOM 2022 - 2022 IEEE Military Communications Conference (MILCOM)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/pdf/2105.10051","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5059859993","display_name":"Jack W. Stokes","orcid":null},"institutions":[{"id":"https://openalex.org/I1290206253","display_name":"Microsoft (United States)","ror":"https://ror.org/00d0nc645","country_code":"US","type":"company","lineage":["https://openalex.org/I1290206253"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Jack W. Stokes","raw_affiliation_strings":["Microsoft Research, Redmond, WA, USA"],"affiliations":[{"raw_affiliation_string":"Microsoft Research, Redmond, WA, USA","institution_ids":["https://openalex.org/I1290206253"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5108571183","display_name":"P. England","orcid":null},"institutions":[{"id":"https://openalex.org/I1290206253","display_name":"Microsoft (United States)","ror":"https://ror.org/00d0nc645","country_code":"US","type":"company","lineage":["https://openalex.org/I1290206253"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Paul England","raw_affiliation_strings":["Microsoft Research, Redmond, WA, USA"],"affiliations":[{"raw_affiliation_string":"Microsoft Research, Redmond, WA, USA","institution_ids":["https://openalex.org/I1290206253"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5004765940","display_name":"Kevin Kane","orcid":null},"institutions":[{"id":"https://openalex.org/I1290206253","display_name":"Microsoft (United States)","ror":"https://ror.org/00d0nc645","country_code":"US","type":"company","lineage":["https://openalex.org/I1290206253"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Kevin Kane","raw_affiliation_strings":["Microsoft Research, Redmond, WA, USA"],"affiliations":[{"raw_affiliation_string":"Microsoft Research, Redmond, WA, USA","institution_ids":["https://openalex.org/I1290206253"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":4.041,"has_fulltext":false,"cited_by_count":8,"citation_normalized_percentile":{"value":0.722513,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":84,"max":86},"biblio":{"volume":null,"issue":null,"first_page":"181","last_page":"188"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11986","display_name":"Scientific Computing and Data Management","score":0.9978,"subfield":{"id":"https://openalex.org/subfields/1802","display_name":"Information Systems and Management"},"field":{"id":"https://openalex.org/fields/18","display_name":"Decision Sciences"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}},"topics":[{"id":"https://openalex.org/T11986","display_name":"Scientific Computing and Data Management","score":0.9978,"subfield":{"id":"https://openalex.org/subfields/1802","display_name":"Information Systems and Management"},"field":{"id":"https://openalex.org/fields/18","display_name":"Decision Sciences"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}},{"id":"https://openalex.org/T11689","display_name":"Adversarial Robustness in Machine Learning","score":0.9943,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11241","display_name":"Advanced Malware Detection Techniques","score":0.9863,"subfield":{"id":"https://openalex.org/subfields/1711","display_name":"Signal Processing"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/threat-model","display_name":"Threat model","score":0.43976474}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.8144969},{"id":"https://openalex.org/C148417208","wikidata":"https://www.wikidata.org/wiki/Q4825882","display_name":"Authentication (law)","level":2,"score":0.6020723},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.5844706},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.5085622},{"id":"https://openalex.org/C2777904410","wikidata":"https://www.wikidata.org/wiki/Q7397","display_name":"Software","level":2,"score":0.4919438},{"id":"https://openalex.org/C38652104","wikidata":"https://www.wikidata.org/wiki/Q3510521","display_name":"Computer security","level":1,"score":0.47615242},{"id":"https://openalex.org/C140547941","wikidata":"https://www.wikidata.org/wiki/Q7797194","display_name":"Threat model","level":2,"score":0.43976474},{"id":"https://openalex.org/C177264268","wikidata":"https://www.wikidata.org/wiki/Q1514741","display_name":"Set (abstract data type)","level":2,"score":0.42217147},{"id":"https://openalex.org/C111919701","wikidata":"https://www.wikidata.org/wiki/Q9135","display_name":"Operating system","level":1,"score":0.13557786},{"id":"https://openalex.org/C199360897","wikidata":"https://www.wikidata.org/wiki/Q9143","display_name":"Programming language","level":1,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/milcom52596.2021.9653139","pdf_url":null,"source":{"id":"https://openalex.org/S4363608114","display_name":"MILCOM 2022 - 2022 IEEE Military Communications Conference (MILCOM)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2105.10051","pdf_url":"https://arxiv.org/pdf/2105.10051","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2105.10051","pdf_url":"https://arxiv.org/pdf/2105.10051","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":21,"referenced_works":["https://openalex.org/W1552694902","https://openalex.org/W2509109313","https://openalex.org/W2557044351","https://openalex.org/W2765325683","https://openalex.org/W2766979629","https://openalex.org/W2774423163","https://openalex.org/W2807363941","https://openalex.org/W2888975495","https://openalex.org/W2892908011","https://openalex.org/W2898998737","https://openalex.org/W2965446359","https://openalex.org/W2967772953","https://openalex.org/W2972986629","https://openalex.org/W3000668449","https://openalex.org/W3001275798","https://openalex.org/W3021988427","https://openalex.org/W3035495837","https://openalex.org/W3106151957","https://openalex.org/W3109235236","https://openalex.org/W3166319166","https://openalex.org/W3184756548"],"related_works":["https://openalex.org/W4390590544","https://openalex.org/W4384212932","https://openalex.org/W4306674287","https://openalex.org/W4286629047","https://openalex.org/W4224009465","https://openalex.org/W4205958290","https://openalex.org/W2990460313","https://openalex.org/W2961085424","https://openalex.org/W2096195258","https://openalex.org/W1869907491"],"abstract_inverted_index":{"Recent":[0],"research":[1],"has":[2,99],"successfully":[3],"demonstrated":[4],"new":[5],"types":[6],"of":[7,56],"data":[8,19,42,58,147],"poisoning":[9,20,43,75,78,82,109,148],"attacks.":[10,31,79],"To":[11,152],"address":[12],"this":[13,33],"problem,":[14],"some":[15],"researchers":[16],"have":[17,141],"proposed":[18,163],"detection":[21],"defenses":[22],"which":[23,45,111,159],"employ":[24],"machine":[25,63,183,197,212],"learning":[26,64,184,198,213],"algorithms":[27],"to":[28,40,52,60,72,92,113,136,169,181,209],"identify":[29],"such":[30,173],"In":[32],"work,":[34],"we":[35,156,201],"take":[36],"a":[37,62,94,115,145,195,211],"different":[38],"approach":[39,68],"preventing":[41],"attacks":[44,110],"relies":[46],"on":[47],"cryptographically-based":[48],"authentication":[49,191],"and":[50,76,192,218],"provenance":[51,193],"ensure":[53],"the":[54,57,97,161,182],"integrity":[55],"used":[59,71,91],"train":[61,93],"model.":[65,95],"The":[66],"same":[67],"is":[69],"also":[70,104,133],"prevent":[73],"software":[74,81,89,216],"model":[77,98,108],"A":[80],"attack":[83,149],"maliciously":[84],"alters":[85],"one":[86],"or":[87,123,129,178],"more":[88],"components":[90],"Once":[96],"been":[100,142],"trained":[101],"it":[102],"can":[103,132],"be":[105,134],"protected":[106,135],"against":[107],"seek":[112],"alter":[114],"model's":[116],"predictions":[117],"by":[118,144],"modifying":[119],"its":[120],"underlying":[121],"parameters":[122],"structure.":[124],"Finally,":[125],"an":[126],"evaluation":[127],"set":[128,131],"test":[130],"provide":[137,188],"evidence":[138],"if":[139],"they":[140],"modified":[143],"second":[146],"during":[150],"inference.":[151],"achieve":[153],"these":[154,207],"goals,":[155],"propose":[157],"VAMP":[158],"extends":[160],"previously":[162],"AMP":[164],"system,":[165],"that":[166],"was":[167],"designed":[168],"protect":[170,210],"media":[171],"objects":[172],"as":[174],"images,":[175],"video":[176],"files":[177],"audio":[179],"clips,":[180],"setting.":[185],"We":[186],"first":[187],"requirements":[189,208],"for":[190,194],"secure":[196],"system.":[199],"Next,":[200],"demonstrate":[202],"how":[203],"VAMP's":[204],"manifest":[205],"meets":[206],"system's":[214],"datasets,":[215],"components,":[217],"models.":[219]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4225688943","counts_by_year":[{"year":2023,"cited_by_count":4},{"year":2022,"cited_by_count":4}],"updated_date":"2025-01-20T00:38:44.546130","created_date":"2022-05-05"}