{"id":"https://openalex.org/W4225874562","doi":"https://doi.org/10.1109/milcom52596.2021.9653119","title":"Open Set Wireless Standard Classification Using Convolutional Neural Networks","display_name":"Open Set Wireless Standard Classification Using Convolutional Neural Networks","publication_year":2021,"publication_date":"2021-11-29","ids":{"openalex":"https://openalex.org/W4225874562","doi":"https://doi.org/10.1109/milcom52596.2021.9653119"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/milcom52596.2021.9653119","pdf_url":null,"source":{"id":"https://openalex.org/S4363608114","display_name":"MILCOM 2022 - 2022 IEEE Military Communications Conference (MILCOM)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/pdf/2108.01656","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5015138970","display_name":"Samuel R. Shebert","orcid":"https://orcid.org/0000-0002-5929-6665"},"institutions":[{"id":"https://openalex.org/I859038795","display_name":"Virginia Tech","ror":"https://ror.org/02smfhw86","country_code":"US","type":"education","lineage":["https://openalex.org/I859038795"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Samuel R. Shebert","raw_affiliation_strings":["Bradley Department of ECE, Virginia Tech, Blacksburg, USA"],"affiliations":[{"raw_affiliation_string":"Bradley Department of ECE, Virginia Tech, Blacksburg, USA","institution_ids":["https://openalex.org/I859038795"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5045799487","display_name":"Anthony F. Martone","orcid":"https://orcid.org/0000-0001-9596-5400"},"institutions":[{"id":"https://openalex.org/I166416128","display_name":"DEVCOM Army Research Laboratory","ror":"https://ror.org/011hc8f90","country_code":"US","type":"government","lineage":["https://openalex.org/I1304082316","https://openalex.org/I1330347796","https://openalex.org/I166416128","https://openalex.org/I2802705668","https://openalex.org/I4210088792","https://openalex.org/I4210154437"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Anthony F. Martone","raw_affiliation_strings":["US Army Research Laboratory, Adelphi, USA"],"affiliations":[{"raw_affiliation_string":"US Army Research Laboratory, Adelphi, USA","institution_ids":["https://openalex.org/I166416128"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5052487611","display_name":"R. Michael Buehrer","orcid":"https://orcid.org/0000-0002-7196-1154"},"institutions":[{"id":"https://openalex.org/I859038795","display_name":"Virginia Tech","ror":"https://ror.org/02smfhw86","country_code":"US","type":"education","lineage":["https://openalex.org/I859038795"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"R. Michael Buehrer","raw_affiliation_strings":["Bradley Department of ECE, Virginia Tech, Blacksburg, USA"],"affiliations":[{"raw_affiliation_string":"Bradley Department of ECE, Virginia Tech, Blacksburg, USA","institution_ids":["https://openalex.org/I859038795"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":2,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.396,"has_fulltext":false,"cited_by_count":4,"citation_normalized_percentile":{"value":0.450845,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":76,"max":78},"biblio":{"volume":null,"issue":null,"first_page":"757","last_page":"762"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T12131","display_name":"Wireless Signal Modulation Classification","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T12131","display_name":"Wireless Signal Modulation Classification","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11447","display_name":"Blind Source Separation Techniques","score":0.9899,"subfield":{"id":"https://openalex.org/subfields/1711","display_name":"Signal Processing"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12791","display_name":"Full-Duplex Wireless Communications","score":0.9892,"subfield":{"id":"https://openalex.org/subfields/2208","display_name":"Electrical and Electronic Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/rician-fading","display_name":"Rician fading","score":0.43989372}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.76054454},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.5707141},{"id":"https://openalex.org/C95623464","wikidata":"https://www.wikidata.org/wiki/Q1096149","display_name":"Classifier (UML)","level":2,"score":0.56508404},{"id":"https://openalex.org/C81363708","wikidata":"https://www.wikidata.org/wiki/Q17084460","display_name":"Convolutional neural network","level":2,"score":0.4950208},{"id":"https://openalex.org/C555944384","wikidata":"https://www.wikidata.org/wiki/Q249","display_name":"Wireless","level":2,"score":0.48040512},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.44583017},{"id":"https://openalex.org/C60472773","wikidata":"https://www.wikidata.org/wiki/Q7331156","display_name":"Rician fading","level":4,"score":0.43989372},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.42860168},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.36381134},{"id":"https://openalex.org/C81978471","wikidata":"https://www.wikidata.org/wiki/Q1196572","display_name":"Fading","level":3,"score":0.17988425},{"id":"https://openalex.org/C76155785","wikidata":"https://www.wikidata.org/wiki/Q418","display_name":"Telecommunications","level":1,"score":0.17608157},{"id":"https://openalex.org/C127162648","wikidata":"https://www.wikidata.org/wiki/Q16858953","display_name":"Channel (broadcasting)","level":2,"score":0.15639469}],"mesh":[],"locations_count":2,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/milcom52596.2021.9653119","pdf_url":null,"source":{"id":"https://openalex.org/S4363608114","display_name":"MILCOM 2022 - 2022 IEEE Military Communications Conference (MILCOM)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2108.01656","pdf_url":"https://arxiv.org/pdf/2108.01656","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2108.01656","pdf_url":"https://arxiv.org/pdf/2108.01656","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[{"display_name":"Affordable and clean energy","id":"https://metadata.un.org/sdg/7","score":0.51}],"grants":[{"funder":"https://openalex.org/F4320338295","funder_display_name":"Army Research Laboratory","award_id":null}],"datasets":[],"versions":[],"referenced_works_count":15,"referenced_works":["https://openalex.org/W2053241902","https://openalex.org/W2166925157","https://openalex.org/W2769269282","https://openalex.org/W2775383661","https://openalex.org/W2901114541","https://openalex.org/W2912136746","https://openalex.org/W2920033744","https://openalex.org/W2954899279","https://openalex.org/W2963149653","https://openalex.org/W2963895067","https://openalex.org/W2963924212","https://openalex.org/W2964909045","https://openalex.org/W2996232706","https://openalex.org/W3014752979","https://openalex.org/W3034675810"],"related_works":["https://openalex.org/W2590769158","https://openalex.org/W2170880428","https://openalex.org/W2166688772","https://openalex.org/W2146680430","https://openalex.org/W2100999214","https://openalex.org/W2096957949","https://openalex.org/W2076800748","https://openalex.org/W2071012255","https://openalex.org/W1973317750","https://openalex.org/W1607978590"],"abstract_inverted_index":{"In":[0,76],"congested":[1],"electromagnetic":[2],"environments,":[3],"cognitive":[4],"radios":[5],"require":[6],"knowledge":[7],"about":[8],"other":[9,196],"emitters":[10,34],"in":[11,47,60,157],"order":[12],"to":[13,27,41,92],"optimize":[14],"their":[15,48],"dynamic":[16],"spectrum":[17],"access":[18],"strategy.":[19],"Deep":[20],"learning":[21,57],"classification":[22],"algorithms":[23],"have":[24],"been":[25],"used":[26],"recognize":[28],"the":[29,53,61,73,90,103,141,158,184,195,198],"wireless":[30],"signal":[31,43,94,208],"standards":[32],"of":[33,55,72,170,214],"with":[35,89,129,175,219],"high":[36],"accuracy,":[37],"but":[38,181,210],"are":[39,96],"limited":[40],"classifying":[42],"classes":[44,70,100,218],"that":[45,95],"appear":[46,156],"training":[49,74,159],"set.":[50,75],"This":[51],"diminishes":[52],"performance":[54],"deep":[56],"classifiers":[58],"deployed":[59],"field":[62],"because":[63],"they":[64],"cannot":[65,188],"accurately":[66],"identify":[67],"signals":[68,127,174,190,215],"from":[69,98,191,216],"outside":[71],"this":[77],"paper,":[78],"a":[79],"convolution":[80],"neural":[81],"network":[82],"based":[83],"open":[84,108,199],"set":[85,109,160,164,186,200],"classifier":[86,110,142,165,187,201],"is":[87],"proposed":[88],"ability":[91],"detect":[93,189,212],"not":[97,155],"known":[99,173,207],"by":[101,182],"thresholding":[102],"output":[104],"sigmoid":[105],"activation.":[106],"The":[107,162],"was":[111,143],"trained":[112],"on":[113,145],"4G":[114],"LTE,":[115],"5G":[116],"NR,":[117],"IEEE":[118],"802.11ax,":[119],"Bluetooth":[120],"Low":[121],"Energy":[122],"5.0,":[123],"and":[124,137,150],"Narrowband":[125],"Internet-of-Things":[126],"impaired":[128],"Rayleigh":[130],"or":[131],"Rician":[132],"fading,":[133],"AWGN,":[134],"frequency":[135],"offsets,":[136],"in-phase/quadrature":[138],"imbalances.":[139],"Then,":[140],"tested":[144],"OFDM,":[146],"SC-FDMA,":[147],"SC,":[148],"AM,":[149],"FM":[151],"signals,":[152],"which":[153],"did":[154],"classes.":[161,193],"closed":[163,185],"achieves":[166],"an":[167,203],"average":[168],"accuracy":[169,205],"94.5%":[171],"for":[172,206],"SNR's":[176,220],"greater":[177,221],"than":[178,222],"0":[179,223],"dB,":[180],"design,":[183],"unknown":[192,217],"On":[194],"hand,":[197],"retains":[202],"86%":[204],"classes,":[209],"can":[211],"95.5%":[213],"dB.":[224]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4225874562","counts_by_year":[{"year":2023,"cited_by_count":2},{"year":2022,"cited_by_count":2}],"updated_date":"2025-01-18T04:58:10.980199","created_date":"2022-05-05"}