{"id":"https://openalex.org/W4206420101","doi":"https://doi.org/10.1109/milcom52596.2021.9653112","title":"Detection of Anomalous Zigbee Transmissions Using Machine Learning","display_name":"Detection of Anomalous Zigbee Transmissions Using Machine Learning","publication_year":2021,"publication_date":"2021-11-29","ids":{"openalex":"https://openalex.org/W4206420101","doi":"https://doi.org/10.1109/milcom52596.2021.9653112"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/milcom52596.2021.9653112","pdf_url":null,"source":{"id":"https://openalex.org/S4363608114","display_name":"MILCOM 2022 - 2022 IEEE Military Communications Conference (MILCOM)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5008949253","display_name":"Jarilyn M. Hern\u00e1ndez Jim\u00e9nez","orcid":null},"institutions":[{"id":"https://openalex.org/I4210122954","display_name":"MIT Lincoln Laboratory","ror":"https://ror.org/022z6jk58","country_code":"US","type":"facility","lineage":["https://openalex.org/I4210122954","https://openalex.org/I63966007"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Jarilyn M. Hernandez Jimenez","raw_affiliation_strings":["MIT Lincoln Laboratory, Lexington, MA"],"affiliations":[{"raw_affiliation_string":"MIT Lincoln Laboratory, Lexington, MA","institution_ids":["https://openalex.org/I4210122954"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5009533642","display_name":"H. Y-P. HONG","orcid":null},"institutions":[{"id":"https://openalex.org/I4210122954","display_name":"MIT Lincoln Laboratory","ror":"https://ror.org/022z6jk58","country_code":"US","type":"facility","lineage":["https://openalex.org/I4210122954","https://openalex.org/I63966007"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Hope Hong","raw_affiliation_strings":["MIT Lincoln Laboratory, Lexington, MA"],"affiliations":[{"raw_affiliation_string":"MIT Lincoln Laboratory, Lexington, MA","institution_ids":["https://openalex.org/I4210122954"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5045966053","display_name":"Patrick Seipel","orcid":null},"institutions":[{"id":"https://openalex.org/I4210162473","display_name":"United States Marine Corps","ror":"https://ror.org/05av6m066","country_code":"US","type":"government","lineage":["https://openalex.org/I1330347796","https://openalex.org/I3130687028","https://openalex.org/I4210162473"]},{"id":"https://openalex.org/I4210122954","display_name":"MIT Lincoln Laboratory","ror":"https://ror.org/022z6jk58","country_code":"US","type":"facility","lineage":["https://openalex.org/I4210122954","https://openalex.org/I63966007"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Patrick Seipel","raw_affiliation_strings":["MIT Lincoln Laboratory, Lexington, MA","US Marine Corps"],"affiliations":[{"raw_affiliation_string":"US Marine Corps","institution_ids":["https://openalex.org/I4210162473"]},{"raw_affiliation_string":"MIT Lincoln Laboratory, Lexington, MA","institution_ids":["https://openalex.org/I4210122954"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":2,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.099,"has_fulltext":false,"cited_by_count":1,"citation_normalized_percentile":{"value":0.253756,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":57,"max":67},"biblio":{"volume":null,"issue":null,"first_page":"583","last_page":"588"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11512","display_name":"Anomaly Detection Techniques and Applications","score":0.9998,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11512","display_name":"Anomaly Detection Techniques and Applications","score":0.9998,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10400","display_name":"Network Security and Intrusion Detection","score":0.9982,"subfield":{"id":"https://openalex.org/subfields/1705","display_name":"Computer Networks and Communications"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11220","display_name":"Water Systems and Optimization","score":0.9782,"subfield":{"id":"https://openalex.org/subfields/2205","display_name":"Civil and Structural Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/c4.5-algorithm","display_name":"C4.5 algorithm","score":0.6317534},{"id":"https://openalex.org/keywords/spoofing-attack","display_name":"Spoofing attack","score":0.5042788}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.72732186},{"id":"https://openalex.org/C52003472","wikidata":"https://www.wikidata.org/wiki/Q1022655","display_name":"C4.5 algorithm","level":4,"score":0.6317534},{"id":"https://openalex.org/C169258074","wikidata":"https://www.wikidata.org/wiki/Q245748","display_name":"Random forest","level":2,"score":0.62806886},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.6217087},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.56404287},{"id":"https://openalex.org/C52001869","wikidata":"https://www.wikidata.org/wiki/Q812530","display_name":"Naive Bayes classifier","level":3,"score":0.5611105},{"id":"https://openalex.org/C739882","wikidata":"https://www.wikidata.org/wiki/Q3560506","display_name":"Anomaly detection","level":2,"score":0.52681684},{"id":"https://openalex.org/C167900197","wikidata":"https://www.wikidata.org/wiki/Q11081100","display_name":"Spoofing attack","level":2,"score":0.5042788},{"id":"https://openalex.org/C555944384","wikidata":"https://www.wikidata.org/wiki/Q249","display_name":"Wireless","level":2,"score":0.4589151},{"id":"https://openalex.org/C24590314","wikidata":"https://www.wikidata.org/wiki/Q336038","display_name":"Wireless sensor network","level":2,"score":0.44663826},{"id":"https://openalex.org/C12267149","wikidata":"https://www.wikidata.org/wiki/Q282453","display_name":"Support vector machine","level":2,"score":0.26611674},{"id":"https://openalex.org/C31258907","wikidata":"https://www.wikidata.org/wiki/Q1301371","display_name":"Computer network","level":1,"score":0.21537653},{"id":"https://openalex.org/C76155785","wikidata":"https://www.wikidata.org/wiki/Q418","display_name":"Telecommunications","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/milcom52596.2021.9653112","pdf_url":null,"source":{"id":"https://openalex.org/S4363608114","display_name":"MILCOM 2022 - 2022 IEEE Military Communications Conference (MILCOM)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":16,"referenced_works":["https://openalex.org/W1528113134","https://openalex.org/W1670263352","https://openalex.org/W2042678829","https://openalex.org/W2053101950","https://openalex.org/W2064218148","https://openalex.org/W2125055259","https://openalex.org/W2503050511","https://openalex.org/W2553036665","https://openalex.org/W2598351857","https://openalex.org/W2619383789","https://openalex.org/W2743100796","https://openalex.org/W2908923193","https://openalex.org/W2911964244","https://openalex.org/W2952030713","https://openalex.org/W2982637733","https://openalex.org/W3004784061"],"related_works":["https://openalex.org/W4283016678","https://openalex.org/W4280611221","https://openalex.org/W4221125739","https://openalex.org/W3204641204","https://openalex.org/W3106359073","https://openalex.org/W2963351125","https://openalex.org/W2962806630","https://openalex.org/W2951086240","https://openalex.org/W2911792412","https://openalex.org/W2904660175"],"abstract_inverted_index":{"Effective":[0],"spectrum":[1,18],"awareness":[2],"is":[3,77],"critical":[4],"to":[5,25],"a":[6],"large":[7],"number":[8],"of":[9,46,82,103,133,148,150,159],"wireless":[10,41],"communication":[11],"systems.":[12],"Malicious":[13],"actors":[14],"increasingly":[15],"use":[16],"the":[17,72,80,90,101,124,146,151,157,167,172,189],"for":[19,118,156,194],"their":[20],"own":[21],"purposes,":[22],"such":[23],"as":[24],"disrupt":[26],"systems":[27],"via":[28],"jamming":[29],"and/or":[30],"spoofing.":[31],"Radio":[32],"anomaly":[33],"detection":[34,81,121,158],"approaches":[35],"have":[36,50],"been":[37],"leveraged":[38],"somewhat":[39],"in":[40,55,63,71],"sensor":[42,56],"networks,":[43],"but":[44],"most":[45,149],"these":[47],"prior":[48],"works":[49],"focused":[51,78],"on":[52,68,79],"detecting":[53],"changes":[54],"data":[57],"(e.g.,":[58],"temperature":[59],"and":[60,92,95,116,122,175,182],"pressure),":[61],"or":[62],"expert":[64],"features":[65,87,144],"rather":[66],"than":[67],"anomalies":[69],"occurring":[70],"physical":[73],"layer.":[74],"This":[75],"paper":[76],"anomalous":[83,119,160],"Zigbee":[84,161],"transmissions":[85],"using":[86,179],"extracted":[88],"from":[89],"in-phase":[91],"quadrature":[93],"components":[94],"network":[96,142],"traffic":[97],"data.":[98],"We":[99],"evaluated":[100],"performance":[102,147],"five":[104],"supervised":[105,152,196],"machine":[106,153,197],"learning":[107,154,198],"algorithms":[108,155],"(i.e.,":[109],"Random":[110,164],"Forest,":[111],"J48,":[112],"JRip,":[113],"Naive":[114],"Bayes,":[115],"PART)":[117],"RF":[120],"identified":[123],"best":[125,168],"learner.":[126],"Furthermore,":[127],"we":[128],"experimented":[129],"with":[130,171],"training":[131,191],"sets":[132],"different":[134,190],"sizes.":[135],"The":[136,184],"main":[137],"findings":[138],"include:":[139],"(1)":[140],"Adding":[141],"flow-based":[143],"improved":[145],"transmissions;":[162],"(2)":[163],"Forest":[165],"was":[166],"performing":[169],"learner":[170],"highest":[173],"F-score":[174],"G-score":[176],"values":[177],"when":[178],"feature-level":[180],"fusion;":[181],"(3)":[183],"learners":[185],"performed":[186],"similarly":[187],"across":[188],"set":[192],"sizes":[193],"all":[195],"algorithms.":[199]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4206420101","counts_by_year":[{"year":2022,"cited_by_count":1}],"updated_date":"2025-01-18T04:51:50.233374","created_date":"2022-01-26"}