{"id":"https://openalex.org/W4205452618","doi":"https://doi.org/10.1109/milcom52596.2021.9653043","title":"A Semi-Supervised Learning Approach for Ranging Error Mitigation Based on UWB Waveform","display_name":"A Semi-Supervised Learning Approach for Ranging Error Mitigation Based on UWB Waveform","publication_year":2021,"publication_date":"2021-11-29","ids":{"openalex":"https://openalex.org/W4205452618","doi":"https://doi.org/10.1109/milcom52596.2021.9653043"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/milcom52596.2021.9653043","pdf_url":null,"source":{"id":"https://openalex.org/S4363608114","display_name":"MILCOM 2022 - 2022 IEEE Military Communications Conference (MILCOM)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["arxiv","crossref","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/pdf/2305.18208","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5044386909","display_name":"Yuxiao Li","orcid":"https://orcid.org/0000-0002-6496-9991"},"institutions":[{"id":"https://openalex.org/I99065089","display_name":"Tsinghua University","ror":"https://ror.org/03cve4549","country_code":"CN","type":"education","lineage":["https://openalex.org/I99065089"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Yuxiao Li","raw_affiliation_strings":["Department of Electronic Engineering, Tsinghua University, Beijing, China"],"affiliations":[{"raw_affiliation_string":"Department of Electronic Engineering, Tsinghua University, Beijing, China","institution_ids":["https://openalex.org/I99065089"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5063455689","display_name":"Santiago Mazuelas","orcid":"https://orcid.org/0000-0002-6608-8581"},"institutions":[{"id":"https://openalex.org/I110594554","display_name":"Ikerbasque","ror":"https://ror.org/01cc3fy72","country_code":"ES","type":"other","lineage":["https://openalex.org/I110594554"]},{"id":"https://openalex.org/I2802176441","display_name":"Basque Center for Applied Mathematics","ror":"https://ror.org/03b21sh32","country_code":"ES","type":"education","lineage":["https://openalex.org/I2802176441"]}],"countries":["ES"],"is_corresponding":false,"raw_author_name":"Santiago Mazuelas","raw_affiliation_strings":["BCAM-Basque Center for Applied Mathematics, IKERBASQUE-Basque Foundation for Science, Bilbao, Spain"],"affiliations":[{"raw_affiliation_string":"BCAM-Basque Center for Applied Mathematics, IKERBASQUE-Basque Foundation for Science, Bilbao, Spain","institution_ids":["https://openalex.org/I110594554","https://openalex.org/I2802176441"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5052022779","display_name":"Yuan Shen","orcid":"https://orcid.org/0000-0002-9396-1964"},"institutions":[{"id":"https://openalex.org/I99065089","display_name":"Tsinghua University","ror":"https://ror.org/03cve4549","country_code":"CN","type":"education","lineage":["https://openalex.org/I99065089"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Yuan Shen","raw_affiliation_strings":["Department of Electronic Engineering, Tsinghua University, Beijing, China"],"affiliations":[{"raw_affiliation_string":"Department of Electronic Engineering, Tsinghua University, Beijing, China","institution_ids":["https://openalex.org/I99065089"]}]}],"institution_assertions":[],"countries_distinct_count":2,"institutions_distinct_count":3,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":4.297,"has_fulltext":true,"fulltext_origin":"pdf","cited_by_count":12,"citation_normalized_percentile":{"value":0.81223,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":89,"max":90},"biblio":{"volume":null,"issue":null,"first_page":"533","last_page":"537"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10326","display_name":"Indoor and Outdoor Localization Technologies","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/2208","display_name":"Electrical and Electronic Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10326","display_name":"Indoor and Outdoor Localization Technologies","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/2208","display_name":"Electrical and Electronic Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12024","display_name":"Ultra-Wideband Communications Technology","score":0.9985,"subfield":{"id":"https://openalex.org/subfields/2208","display_name":"Electrical and Electronic Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11739","display_name":"Microwave Imaging and Scattering Analysis","score":0.9978,"subfield":{"id":"https://openalex.org/subfields/2204","display_name":"Biomedical Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/ranging","display_name":"Ranging","score":0.8570074},{"id":"https://openalex.org/keywords/non-line-of-sight-propagation","display_name":"Non-line-of-sight propagation","score":0.8511647},{"id":"https://openalex.org/keywords/statistic","display_name":"Statistic","score":0.5601255},{"id":"https://openalex.org/keywords/supervised-learning","display_name":"Supervised Learning","score":0.5485533},{"id":"https://openalex.org/keywords/word-error-rate","display_name":"Word error rate","score":0.54047763}],"concepts":[{"id":"https://openalex.org/C115051666","wikidata":"https://www.wikidata.org/wiki/Q6522493","display_name":"Ranging","level":2,"score":0.8570074},{"id":"https://openalex.org/C154910267","wikidata":"https://www.wikidata.org/wiki/Q1740982","display_name":"Non-line-of-sight propagation","level":3,"score":0.8511647},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.7914643},{"id":"https://openalex.org/C197424946","wikidata":"https://www.wikidata.org/wiki/Q1165717","display_name":"Waveform","level":3,"score":0.70803696},{"id":"https://openalex.org/C21916231","wikidata":"https://www.wikidata.org/wiki/Q851424","display_name":"Ultra-wideband","level":2,"score":0.5982828},{"id":"https://openalex.org/C89128539","wikidata":"https://www.wikidata.org/wiki/Q1949963","display_name":"Statistic","level":2,"score":0.5601255},{"id":"https://openalex.org/C136389625","wikidata":"https://www.wikidata.org/wiki/Q334384","display_name":"Supervised learning","level":3,"score":0.5485533},{"id":"https://openalex.org/C40969351","wikidata":"https://www.wikidata.org/wiki/Q3516228","display_name":"Word error rate","level":2,"score":0.54047763},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.5402299},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.49386698},{"id":"https://openalex.org/C52001869","wikidata":"https://www.wikidata.org/wiki/Q812530","display_name":"Naive Bayes classifier","level":3,"score":0.4454299},{"id":"https://openalex.org/C58973888","wikidata":"https://www.wikidata.org/wiki/Q1041418","display_name":"Semi-supervised learning","level":2,"score":0.43401778},{"id":"https://openalex.org/C207201462","wikidata":"https://www.wikidata.org/wiki/Q182505","display_name":"Bayes' theorem","level":3,"score":0.41960824},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.33069158},{"id":"https://openalex.org/C555944384","wikidata":"https://www.wikidata.org/wiki/Q249","display_name":"Wireless","level":2,"score":0.2217803},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.124455124},{"id":"https://openalex.org/C107673813","wikidata":"https://www.wikidata.org/wiki/Q812534","display_name":"Bayesian probability","level":2,"score":0.10659164},{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.101225644},{"id":"https://openalex.org/C76155785","wikidata":"https://www.wikidata.org/wiki/Q418","display_name":"Telecommunications","level":1,"score":0.09907529},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.08916837},{"id":"https://openalex.org/C12267149","wikidata":"https://www.wikidata.org/wiki/Q282453","display_name":"Support vector machine","level":2,"score":0.07557243},{"id":"https://openalex.org/C554190296","wikidata":"https://www.wikidata.org/wiki/Q47528","display_name":"Radar","level":2,"score":0.0}],"mesh":[],"locations_count":4,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/milcom52596.2021.9653043","pdf_url":null,"source":{"id":"https://openalex.org/S4363608114","display_name":"MILCOM 2022 - 2022 IEEE Military Communications Conference (MILCOM)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2305.18208","pdf_url":"https://arxiv.org/pdf/2305.18208","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"http://hdl.handle.net/20.500.11824/1445","pdf_url":"https://bird.bcamath.org/bitstream/20.500.11824/1445/3/A_Semi_Supervised_Learning_Approach_for_Ranging_Error_Mitigation_Based_on_UWB_Waveform_v12.pdf","source":{"id":"https://openalex.org/S4306401608","display_name":"BIRD (Basque Center for Applied Mathematics)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I2802176441","host_organization_name":"Basque Center for Applied Mathematics","host_organization_lineage":["https://openalex.org/I2802176441"],"host_organization_lineage_names":["Basque Center for Applied Mathematics"],"type":"repository"},"license":"cc-by-nc-sa","license_id":"https://openalex.org/licenses/cc-by-nc-sa","version":"publishedVersion","is_accepted":true,"is_published":true},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2305.18208","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2305.18208","pdf_url":"https://arxiv.org/pdf/2305.18208","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[{"funder":"https://openalex.org/F4320335777","funder_display_name":"National Key Research and Development Program of China","award_id":"2020YFC1511803"}],"datasets":[],"versions":[],"referenced_works_count":17,"referenced_works":["https://openalex.org/W1522301498","https://openalex.org/W1959608418","https://openalex.org/W2075744751","https://openalex.org/W2121004630","https://openalex.org/W2127549763","https://openalex.org/W2144244418","https://openalex.org/W2162718622","https://openalex.org/W2603777577","https://openalex.org/W2740222873","https://openalex.org/W2790826789","https://openalex.org/W2883152037","https://openalex.org/W2883475824","https://openalex.org/W2899771611","https://openalex.org/W2972776893","https://openalex.org/W3106678532","https://openalex.org/W4206997633","https://openalex.org/W4210560670"],"related_works":["https://openalex.org/W4312990322","https://openalex.org/W4312414840","https://openalex.org/W3035025758","https://openalex.org/W2621411691","https://openalex.org/W2556866732","https://openalex.org/W2271357838","https://openalex.org/W2134186565","https://openalex.org/W2002451294","https://openalex.org/W1586607209","https://openalex.org/W122912556"],"abstract_inverted_index":{"Localization":[0],"systems":[1],"based":[2,72],"on":[3,73],"ultra-wide":[4],"band":[5],"(UWB)":[6],"measurements":[7],"can":[8,90],"have":[9,28],"unsatisfactory":[10],"performance":[11,31],"in":[12],"harsh":[13],"environments":[14],"due":[15],"to":[16,59,118],"the":[17,36,104,107,115],"presence":[18],"of":[19,40,106],"non-line-of-sight":[20],"(NLOS)":[21],"errors.":[22],"Learning-based":[23],"methods":[24,45,122],"for":[25,55,76],"error":[26,79],"mitigation":[27],"shown":[29],"great":[30],"improvement":[32],"via":[33],"directly":[34],"exploiting":[35],"wideband":[37],"waveform":[38],"instead":[39],"handcrafted":[41],"features.":[42],"However,":[43],"these":[44],"require":[46],"data":[47,61,99],"samples":[48],"fully":[49,120],"labeled":[50,96],"with":[51],"actual":[52],"measurement":[53],"errors":[54],"training,":[56],"which":[57],"leads":[58],"time-consuming":[60],"collection.":[62],"In":[63],"this":[64],"paper,":[65],"we":[66],"propose":[67],"a":[68,125],"semi-supervised":[69],"learning":[70,83],"method":[71,89,109],"variational":[74],"Bayes":[75],"UWB":[77],"ranging":[78],"mitigation.":[80],"Combining":[81],"deep":[82],"techniques":[84],"and":[85,97,114],"statistic":[86],"tools,":[87],"our":[88],"efficiently":[91],"accumulate":[92],"knowledge":[93],"from":[94],"both":[95],"unlabeled":[98],"samples.":[100],"Extensive":[101],"experiments":[102],"illustrate":[103],"effectiveness":[105],"proposed":[108],"under":[110],"different":[111],"supervision":[112,127],"rates,":[113],"superiority":[116],"compared":[117],"other":[119],"supervised":[121],"even":[123],"at":[124],"low":[126],"rate.":[128]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4205452618","counts_by_year":[{"year":2024,"cited_by_count":5},{"year":2023,"cited_by_count":6},{"year":2022,"cited_by_count":1}],"updated_date":"2025-01-18T07:53:27.310970","created_date":"2022-01-26"}