{"id":"https://openalex.org/W4206233339","doi":"https://doi.org/10.1109/milcom52596.2021.9653027","title":"Privacy Leakage Avoidance with Switching Ensembles","display_name":"Privacy Leakage Avoidance with Switching Ensembles","publication_year":2021,"publication_date":"2021-11-29","ids":{"openalex":"https://openalex.org/W4206233339","doi":"https://doi.org/10.1109/milcom52596.2021.9653027"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/milcom52596.2021.9653027","pdf_url":null,"source":{"id":"https://openalex.org/S4363608114","display_name":"MILCOM 2022 - 2022 IEEE Military Communications Conference (MILCOM)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/pdf/1911.07921","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5078482977","display_name":"Rauf Izmailov","orcid":"https://orcid.org/0000-0002-7326-669X"},"institutions":[],"countries":["US"],"is_corresponding":false,"raw_author_name":"Rauf Izmailov","raw_affiliation_strings":["Peraton Labs Inc., NJ, USA"],"affiliations":[{"raw_affiliation_string":"Peraton Labs Inc., NJ, USA","institution_ids":[]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5027156916","display_name":"Peter Lin","orcid":"https://orcid.org/0000-0002-7430-8804"},"institutions":[],"countries":["US"],"is_corresponding":false,"raw_author_name":"Peter Lin","raw_affiliation_strings":["Peraton Labs Inc., NJ, USA"],"affiliations":[{"raw_affiliation_string":"Peraton Labs Inc., NJ, USA","institution_ids":[]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5026999236","display_name":"Chris Mesterharm","orcid":null},"institutions":[],"countries":["US"],"is_corresponding":false,"raw_author_name":"Chris Mesterharm","raw_affiliation_strings":["Peraton Labs Inc., NJ, USA"],"affiliations":[{"raw_affiliation_string":"Peraton Labs Inc., NJ, USA","institution_ids":[]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5085795724","display_name":"Samyadeep Basu","orcid":null},"institutions":[{"id":"https://openalex.org/I66946132","display_name":"University of Maryland, College Park","ror":"https://ror.org/047s2c258","country_code":"US","type":"education","lineage":["https://openalex.org/I66946132"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Samyadeep Basu","raw_affiliation_strings":["University of Maryland, College Park, MD, USA"],"affiliations":[{"raw_affiliation_string":"University of Maryland, College Park, MD, USA","institution_ids":["https://openalex.org/I66946132"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.102,"has_fulltext":false,"cited_by_count":1,"citation_normalized_percentile":{"value":0.305691,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":57,"max":67},"biblio":{"volume":null,"issue":null,"first_page":"981","last_page":"986"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10764","display_name":"Privacy-Preserving Technologies in Data","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10764","display_name":"Privacy-Preserving Technologies in Data","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11689","display_name":"Adversarial Robustness in Machine Learning","score":0.9982,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10237","display_name":"Cryptography and Data Security","score":0.9584,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/disjoint-sets","display_name":"Disjoint sets","score":0.67274},{"id":"https://openalex.org/keywords/training-set","display_name":"Training set","score":0.4974995}],"concepts":[{"id":"https://openalex.org/C2776214188","wikidata":"https://www.wikidata.org/wiki/Q408386","display_name":"Inference","level":2,"score":0.76875305},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.7521273},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.74054354},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.6993146},{"id":"https://openalex.org/C45340560","wikidata":"https://www.wikidata.org/wiki/Q215382","display_name":"Disjoint sets","level":2,"score":0.67274},{"id":"https://openalex.org/C51632099","wikidata":"https://www.wikidata.org/wiki/Q3985153","display_name":"Training set","level":2,"score":0.4974995},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.11238769},{"id":"https://openalex.org/C114614502","wikidata":"https://www.wikidata.org/wiki/Q76592","display_name":"Combinatorics","level":1,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/milcom52596.2021.9653027","pdf_url":null,"source":{"id":"https://openalex.org/S4363608114","display_name":"MILCOM 2022 - 2022 IEEE Military Communications Conference (MILCOM)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/1911.07921","pdf_url":"https://arxiv.org/pdf/1911.07921","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/1911.07921","pdf_url":"https://arxiv.org/pdf/1911.07921","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[{"score":0.62,"display_name":"Peace, justice, and strong institutions","id":"https://metadata.un.org/sdg/16"}],"grants":[{"funder":"https://openalex.org/F4320332165","funder_display_name":"National Geospatial-Intelligence Agency","award_id":"NM0476-19-C-0007"}],"datasets":[],"versions":[],"referenced_works_count":14,"referenced_works":["https://openalex.org/W2027595342","https://openalex.org/W2051267297","https://openalex.org/W2335728318","https://openalex.org/W2535690855","https://openalex.org/W2603766943","https://openalex.org/W2617174679","https://openalex.org/W2884943453","https://openalex.org/W2954172636","https://openalex.org/W2963378725","https://openalex.org/W2964318098","https://openalex.org/W4289143744","https://openalex.org/W4291984345","https://openalex.org/W4297799122","https://openalex.org/W4299585995"],"related_works":["https://openalex.org/W4387297750","https://openalex.org/W4386462264","https://openalex.org/W4312192474","https://openalex.org/W4306674287","https://openalex.org/W4210805261","https://openalex.org/W3209574120","https://openalex.org/W3170094116","https://openalex.org/W3107602296","https://openalex.org/W3046775127","https://openalex.org/W2961085424"],"abstract_inverted_index":{"We":[0,82,180],"consider":[1],"membership":[2,99],"inference":[3,100,117],"attacks,":[4],"one":[5],"of":[6,63,71,87,120,149],"the":[7,37,41,59,72,126,130,142,145,187,188],"main":[8],"privacy":[9,56,88],"issues":[10],"in":[11,22,114,129,144,153],"machine":[12,43,74],"learning.":[13],"These":[14],"recently":[15],"developed":[16,52],"attacks":[17,101],"have":[18,50],"been":[19,51],"proven":[20],"successful":[21],"determining,":[23],"with":[24,91,105,186],"confidence":[25],"better":[26],"than":[27],"a":[28,32,84],"random":[29],"guess,":[30],"whether":[31],"given":[33],"sample":[34],"belongs":[35],"to":[36,53,167],"dataset":[38],"on":[39,193],"which":[40,95],"attacked":[42],"learning":[44,75],"model":[45],"was":[46],"trained.":[47],"Several":[48],"approaches":[49],"mitigate":[54],"this":[55],"leakage":[57,89],"but":[58],"tradeoff":[60],"performance":[61],"implications":[62],"these":[64],"defensive":[65],"mechanisms":[66],"(i.e.,":[67],"accuracy":[68,108],"and":[69,102,116,197],"utility":[70],"defended":[73],"model)":[76],"are":[77],"not":[78],"well":[79],"studied":[80],"yet.":[81],"propose":[83],"novel":[85],"approach":[86],"avoidance":[90],"switching":[92],"ensembles":[93],"(PASE),":[94],"protects":[96],"against":[97],"current":[98,131,189],"does":[103],"that":[104,150],"very":[106],"small":[107],"penalty,":[109],"while":[110],"requiring":[111],"acceptable":[112],"increase":[113],"training":[115,125,141,158,170],"time.":[118],"Instead":[119],"using":[121],"disjoint":[122],"subsets":[123,139],"for":[124,140,164,177],"classifiers":[127,143,166],"as":[128],"state-of-the-art":[132,190],"PATE":[133,191],"approach,":[134,192],"PASE":[135,183],"uses":[136],"significantly":[137,156],"overlapping":[138],"ensemble.":[146],"The":[147],"consequence":[148],"distinction":[151],"is":[152],"moving":[154],"from":[155],"reduced":[157,162,169,175],"sizes":[159,171],"(and,":[160,172],"correspondingly,":[161,173],"accuracy)":[163,176],"individual":[165,178],"insignificantly":[168,174],"classifiers.":[179],"test":[181],"our":[182],"method,":[184],"along":[185],"three":[194],"calibration":[195],"datasets":[196],"analyze":[198],"their":[199],"tradeoffs.":[200]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4206233339","counts_by_year":[{"year":2022,"cited_by_count":1}],"updated_date":"2024-12-12T03:34:00.671178","created_date":"2022-01-26"}