{"id":"https://openalex.org/W4205695684","doi":"https://doi.org/10.1109/milcom52596.2021.9653019","title":"Novel RF Spectrum Characterization Using Information Measures","display_name":"Novel RF Spectrum Characterization Using Information Measures","publication_year":2021,"publication_date":"2021-11-29","ids":{"openalex":"https://openalex.org/W4205695684","doi":"https://doi.org/10.1109/milcom52596.2021.9653019"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/milcom52596.2021.9653019","pdf_url":null,"source":{"id":"https://openalex.org/S4363608114","display_name":"MILCOM 2022 - 2022 IEEE Military Communications Conference (MILCOM)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5103079852","display_name":"J. J. Kelly","orcid":"https://orcid.org/0000-0003-2428-4418"},"institutions":[{"id":"https://openalex.org/I1280414376","display_name":"United States Air Force Research Laboratory","ror":"https://ror.org/02e2egq70","country_code":"US","type":"facility","lineage":["https://openalex.org/I1280414376","https://openalex.org/I1330347796","https://openalex.org/I4210089612","https://openalex.org/I4210102105","https://openalex.org/I4389425425"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"John J. Kelly","raw_affiliation_strings":["Air Force Research Laboratory (AFRL), Information Directorate, Rome, NY"],"affiliations":[{"raw_affiliation_string":"Air Force Research Laboratory (AFRL), Information Directorate, Rome, NY","institution_ids":["https://openalex.org/I1280414376"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5090511254","display_name":"Daniel L. Stevens","orcid":"https://orcid.org/0000-0002-9445-4411"},"institutions":[{"id":"https://openalex.org/I1280414376","display_name":"United States Air Force Research Laboratory","ror":"https://ror.org/02e2egq70","country_code":"US","type":"facility","lineage":["https://openalex.org/I1280414376","https://openalex.org/I1330347796","https://openalex.org/I4210089612","https://openalex.org/I4210102105","https://openalex.org/I4389425425"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Daniel L. Stevens","raw_affiliation_strings":["Air Force Research Laboratory (AFRL), Information Directorate, Rome, NY"],"affiliations":[{"raw_affiliation_string":"Air Force Research Laboratory (AFRL), Information Directorate, Rome, NY","institution_ids":["https://openalex.org/I1280414376"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.0,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":57},"biblio":{"volume":null,"issue":null,"first_page":"255","last_page":"260"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11447","display_name":"Blind Source Separation Techniques","score":0.9982,"subfield":{"id":"https://openalex.org/subfields/1711","display_name":"Signal Processing"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11447","display_name":"Blind Source Separation Techniques","score":0.9982,"subfield":{"id":"https://openalex.org/subfields/1711","display_name":"Signal Processing"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12879","display_name":"Distributed Sensor Networks and Detection Algorithms","score":0.9943,"subfield":{"id":"https://openalex.org/subfields/1705","display_name":"Computer Networks and Communications"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10500","display_name":"Sparse and Compressive Sensing Techniques","score":0.9832,"subfield":{"id":"https://openalex.org/subfields/2206","display_name":"Computational Mechanics"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[],"concepts":[{"id":"https://openalex.org/C142259097","wikidata":"https://www.wikidata.org/wiki/Q5891314","display_name":"Homogeneity (statistics)","level":2,"score":0.7197974},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.6840171},{"id":"https://openalex.org/C74064498","wikidata":"https://www.wikidata.org/wiki/Q3396184","display_name":"Radio frequency","level":2,"score":0.6378813},{"id":"https://openalex.org/C2776436953","wikidata":"https://www.wikidata.org/wiki/Q5163215","display_name":"Consistency (knowledge bases)","level":2,"score":0.5186895},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.4689013},{"id":"https://openalex.org/C2780009758","wikidata":"https://www.wikidata.org/wiki/Q6804172","display_name":"Measure (data warehouse)","level":2,"score":0.4284534},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.16169503},{"id":"https://openalex.org/C76155785","wikidata":"https://www.wikidata.org/wiki/Q418","display_name":"Telecommunications","level":1,"score":0.15493518},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.11038211}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/milcom52596.2021.9653019","pdf_url":null,"source":{"id":"https://openalex.org/S4363608114","display_name":"MILCOM 2022 - 2022 IEEE Military Communications Conference (MILCOM)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":16,"referenced_works":["https://openalex.org/W1753821802","https://openalex.org/W2034476680","https://openalex.org/W2047480911","https://openalex.org/W2050381884","https://openalex.org/W2100620757","https://openalex.org/W2133912818","https://openalex.org/W2145487065","https://openalex.org/W2152294662","https://openalex.org/W2165918462","https://openalex.org/W250076511","https://openalex.org/W2575989903","https://openalex.org/W2741401375","https://openalex.org/W2764133467","https://openalex.org/W2767669108","https://openalex.org/W2904588591","https://openalex.org/W3048317763"],"related_works":["https://openalex.org/W2572678357","https://openalex.org/W2371593620","https://openalex.org/W2156037511","https://openalex.org/W2075537321","https://openalex.org/W2059493168","https://openalex.org/W2055668825","https://openalex.org/W2024930283","https://openalex.org/W2019481703","https://openalex.org/W1999392235","https://openalex.org/W1568996612"],"abstract_inverted_index":{"As":[0],"the":[1,13,52,74,81,89,122],"number":[2],"of":[3,56,76,88,91,101,126,139],"radio":[4],"frequency":[5],"(RF)":[6],"systems":[7],"in":[8],"use":[9],"continues":[10,22],"to":[11,15,23,35,48,108,120,134],"increase,":[12],"need":[14],"monitor":[16],"and":[17,27,50,54,72,133],"securely":[18],"share":[19],"limited":[20],"spectrum":[21,29,38],"correspondingly":[24],"grow.":[25],"Tracking":[26],"analyzing":[28],"usage":[30],"over":[31],"time":[32],"is":[33,83],"pivotal":[34],"secure":[36],"dynamic":[37],"sharing.":[39],"This":[40,114],"paper":[41],"presents":[42],"a":[43,84,92,98,130],"novel":[44],"unsupervised,":[45],"information-based":[46],"approach":[47],"identifying":[49],"characterizing":[51],"complexity":[53,125],"quality":[55,123],"an":[57],"RF":[58],"signal's":[59],"time-frequency":[60],"(TF)":[61],"characteristics.":[62],"The":[63,95],"proposed":[64],"method":[65],"draws":[66],"on":[67],"tools":[68],"from":[69],"information":[70],"geometry":[71],"utilizes":[73],"set":[75],"correlation":[77],"matrices.":[78],"In":[79],"particular,":[80],"informativeness":[82,96],"recently":[85],"developed":[86],"measure":[87],"homogeneity":[90],"data":[93,103,128],"set.":[94],"provides":[97],"two-parameter":[99],"characterization":[100],"multi-dimensional":[102],"that":[104],"can":[105,117],"be":[106,118],"used":[107,119],"assess":[109,121,135],"TF":[110],"grids":[111],"for":[112],"homogeneity.":[113],"intrinsic":[115],"consistency":[116,136],"or":[124],"recorded":[127],"at":[129],"single":[131],"sensor,":[132],"between":[137],"pairs":[138],"sensor":[140],"network":[141],"nodes.":[142]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4205695684","counts_by_year":[],"updated_date":"2024-12-12T03:35:29.535523","created_date":"2022-01-26"}