{"id":"https://openalex.org/W4205561027","doi":"https://doi.org/10.1109/milcom52596.2021.9652947","title":"HoneyModels: Machine Learning Honeypots","display_name":"HoneyModels: Machine Learning Honeypots","publication_year":2021,"publication_date":"2021-11-29","ids":{"openalex":"https://openalex.org/W4205561027","doi":"https://doi.org/10.1109/milcom52596.2021.9652947"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/milcom52596.2021.9652947","pdf_url":null,"source":{"id":"https://openalex.org/S4363608114","display_name":"MILCOM 2022 - 2022 IEEE Military Communications Conference (MILCOM)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["arxiv","crossref","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/pdf/2202.10309","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5007570908","display_name":"Ahmed Abdou","orcid":"https://orcid.org/0000-0003-2430-0780"},"institutions":[{"id":"https://openalex.org/I130769515","display_name":"Pennsylvania State University","ror":"https://ror.org/04p491231","country_code":"US","type":"education","lineage":["https://openalex.org/I130769515"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Ahmed Abdou","raw_affiliation_strings":["School of Electrical and Computer Engineering, The Pennsylvania State University, USA"],"affiliations":[{"raw_affiliation_string":"School of Electrical and Computer Engineering, The Pennsylvania State University, USA","institution_ids":["https://openalex.org/I130769515"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5056794879","display_name":"Ryan Sheatsley","orcid":"https://orcid.org/0000-0001-8447-602X"},"institutions":[{"id":"https://openalex.org/I130769515","display_name":"Pennsylvania State University","ror":"https://ror.org/04p491231","country_code":"US","type":"education","lineage":["https://openalex.org/I130769515"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Ryan Sheatsley","raw_affiliation_strings":["School of Electrical and Computer Engineering, The Pennsylvania State University, USA"],"affiliations":[{"raw_affiliation_string":"School of Electrical and Computer Engineering, The Pennsylvania State University, USA","institution_ids":["https://openalex.org/I130769515"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5007771274","display_name":"Yohan Beugin","orcid":"https://orcid.org/0000-0003-0991-7926"},"institutions":[{"id":"https://openalex.org/I130769515","display_name":"Pennsylvania State University","ror":"https://ror.org/04p491231","country_code":"US","type":"education","lineage":["https://openalex.org/I130769515"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Yohan Beugin","raw_affiliation_strings":["School of Electrical and Computer Engineering, The Pennsylvania State University, USA"],"affiliations":[{"raw_affiliation_string":"School of Electrical and Computer Engineering, The Pennsylvania State University, USA","institution_ids":["https://openalex.org/I130769515"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5045049618","display_name":"Tyler J. Shipp","orcid":null},"institutions":[{"id":"https://openalex.org/I2802705668","display_name":"United States Army Combat Capabilities Development Command","ror":"https://ror.org/02rdkx920","country_code":"US","type":"other","lineage":["https://openalex.org/I1304082316","https://openalex.org/I1330347796","https://openalex.org/I2802705668","https://openalex.org/I4210088792","https://openalex.org/I4210154437"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Tyler Shipp","raw_affiliation_strings":["DEVCOM C5ISR, Maryland, USA"],"affiliations":[{"raw_affiliation_string":"DEVCOM C5ISR, Maryland, USA","institution_ids":["https://openalex.org/I2802705668"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5055368149","display_name":"Patrick McDaniel","orcid":"https://orcid.org/0000-0003-2091-7484"},"institutions":[{"id":"https://openalex.org/I130769515","display_name":"Pennsylvania State University","ror":"https://ror.org/04p491231","country_code":"US","type":"education","lineage":["https://openalex.org/I130769515"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Patrick McDaniel","raw_affiliation_strings":["School of Electrical and Computer Engineering, The Pennsylvania State University, USA"],"affiliations":[{"raw_affiliation_string":"School of Electrical and Computer Engineering, The Pennsylvania State University, USA","institution_ids":["https://openalex.org/I130769515"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":2,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.203,"has_fulltext":true,"fulltext_origin":"pdf","cited_by_count":2,"citation_normalized_percentile":{"value":0.305691,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":67,"max":72},"biblio":{"volume":null,"issue":null,"first_page":"886","last_page":"891"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11689","display_name":"Adversarial Robustness in Machine Learning","score":1.0,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11689","display_name":"Adversarial Robustness in Machine Learning","score":1.0,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11241","display_name":"Advanced Malware Detection Techniques","score":0.9921,"subfield":{"id":"https://openalex.org/subfields/1711","display_name":"Signal Processing"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11424","display_name":"Security and Verification in Computing","score":0.9675,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/honeypot","display_name":"Honeypot","score":0.8576047},{"id":"https://openalex.org/keywords/adversarial-machine-learning","display_name":"Adversarial machine learning","score":0.77140266},{"id":"https://openalex.org/keywords/threat-model","display_name":"Threat model","score":0.41814715}],"concepts":[{"id":"https://openalex.org/C37736160","wikidata":"https://www.wikidata.org/wiki/Q1801315","display_name":"Adversarial system","level":2,"score":0.8788936},{"id":"https://openalex.org/C191267431","wikidata":"https://www.wikidata.org/wiki/Q911932","display_name":"Honeypot","level":2,"score":0.8576047},{"id":"https://openalex.org/C41065033","wikidata":"https://www.wikidata.org/wiki/Q2825412","display_name":"Adversary","level":2,"score":0.8331449},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.81468},{"id":"https://openalex.org/C2778403875","wikidata":"https://www.wikidata.org/wiki/Q20312394","display_name":"Adversarial machine learning","level":3,"score":0.77140266},{"id":"https://openalex.org/C38652104","wikidata":"https://www.wikidata.org/wiki/Q3510521","display_name":"Computer security","level":1,"score":0.5918015},{"id":"https://openalex.org/C48044578","wikidata":"https://www.wikidata.org/wiki/Q727490","display_name":"Scalability","level":2,"score":0.5768009},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.55303246},{"id":"https://openalex.org/C9652623","wikidata":"https://www.wikidata.org/wiki/Q190109","display_name":"Field (mathematics)","level":2,"score":0.49743226},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.47075585},{"id":"https://openalex.org/C164112704","wikidata":"https://www.wikidata.org/wiki/Q7974348","display_name":"Watermark","level":3,"score":0.46347532},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.42864934},{"id":"https://openalex.org/C140547941","wikidata":"https://www.wikidata.org/wiki/Q7797194","display_name":"Threat model","level":2,"score":0.41814715},{"id":"https://openalex.org/C41608201","wikidata":"https://www.wikidata.org/wiki/Q980509","display_name":"Embedding","level":2,"score":0.0},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.0},{"id":"https://openalex.org/C77088390","wikidata":"https://www.wikidata.org/wiki/Q8513","display_name":"Database","level":1,"score":0.0},{"id":"https://openalex.org/C202444582","wikidata":"https://www.wikidata.org/wiki/Q837863","display_name":"Pure mathematics","level":1,"score":0.0}],"mesh":[],"locations_count":3,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/milcom52596.2021.9652947","pdf_url":null,"source":{"id":"https://openalex.org/S4363608114","display_name":"MILCOM 2022 - 2022 IEEE Military Communications Conference (MILCOM)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2202.10309","pdf_url":"https://arxiv.org/pdf/2202.10309","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2202.10309","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2202.10309","pdf_url":"https://arxiv.org/pdf/2202.10309","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":["https://openalex.org/W4205561027"],"referenced_works_count":32,"referenced_works":["https://openalex.org/W1522301498","https://openalex.org/W1673923490","https://openalex.org/W2012533078","https://openalex.org/W2045732268","https://openalex.org/W2083252561","https://openalex.org/W2180612164","https://openalex.org/W2194775991","https://openalex.org/W2342840547","https://openalex.org/W2408141691","https://openalex.org/W2535873859","https://openalex.org/W2603766943","https://openalex.org/W2607219512","https://openalex.org/W2748789698","https://openalex.org/W2786163515","https://openalex.org/W2795098699","https://openalex.org/W2899692219","https://openalex.org/W2913318911","https://openalex.org/W2950048339","https://openalex.org/W2950106672","https://openalex.org/W2963542245","https://openalex.org/W2963857521","https://openalex.org/W2964082701","https://openalex.org/W2971180473","https://openalex.org/W2983044655","https://openalex.org/W3088733693","https://openalex.org/W3118608800","https://openalex.org/W4293846201","https://openalex.org/W4294506858","https://openalex.org/W4295312788","https://openalex.org/W4297573953","https://openalex.org/W4301187031","https://openalex.org/W4381325153"],"related_works":["https://openalex.org/W4384648009","https://openalex.org/W4383468834","https://openalex.org/W4380352238","https://openalex.org/W4287828318","https://openalex.org/W4283221438","https://openalex.org/W3126470649","https://openalex.org/W3048732067","https://openalex.org/W2900159906","https://openalex.org/W2899811703","https://openalex.org/W2406556600"],"abstract_inverted_index":{"Machine":[0,38,163],"Learning":[1,39,164],"is":[2],"becoming":[3],"a":[4,48,145],"pivotal":[5],"aspect":[6],"of":[7,36,130,140,153,174],"many":[8],"systems":[9,32],"today,":[10],"offering":[11],"newfound":[12],"performance":[13],"on":[14],"classification":[15],"and":[16,44,63,68],"prediction":[17],"tasks,":[18],"but":[19,182],"this":[20,89,125],"rapid":[21],"integration":[22],"also":[23],"comes":[24],"with":[25,107,117],"new":[26,42],"unforeseen":[27],"vulnerabilities.":[28],"To":[29],"harden":[30],"these":[31,53],"the":[33,150,154,168,172,180,187],"ever-growing":[34],"field":[35],"Adversarial":[37],"has":[40],"proposed":[41],"attack":[43,144],"defense":[45],"mechanisms.":[46],"However,":[47],"great":[49],"asymmetry":[50],"exists":[51],"as":[52],"defensive":[54,82],"methods":[55],"can":[56,79,137],"only":[57],"provide":[58],"security":[59],"to":[60,71,99,123,143,161],"certain":[61],"models":[62,106],"lack":[64],"scalability,":[65],"computational":[66],"efficiency,":[67],"practicality":[69],"due":[70],"overly":[72],"restrictive":[73],"constraints.":[74],"Moreover,":[75],"newly":[76],"introduced":[77],"attacks":[78,120],"easily":[80],"bypass":[81],"strategies":[83],"by":[84,97,179],"making":[85],"subtle":[86],"alterations.":[87],"In":[88],"paper,":[90],"we":[91],"study":[92],"an":[93,108,112,115,158],"alternate":[94,159],"approach":[95,103],"inspired":[96],"honeypots":[98],"detect":[100],"adversaries.":[101],"Our":[102],"yields":[104],"learned":[105],"embedded":[109],"watermark.":[110],"When":[111],"adversary":[113],"initiates":[114],"interaction":[116],"our":[118],"model,":[119],"are":[121],"encouraged":[122],"add":[124],"predetermined":[126],"watermark":[127],"stimulating":[128],"detection":[129],"adversarial":[131,176],"examples.":[132],"We":[133],"show":[134],"that":[135,165],"HoneyModels":[136,156],"reveal":[138],"69.5%":[139],"adversaries":[141],"attempting":[142],"Neural":[146],"Network":[147],"while":[148,170],"preserving":[149],"original":[151],"functionality":[152],"model.":[155],"offer":[157],"direction":[160],"secure":[162],"slightly":[166],"affects":[167],"accuracy":[169],"encouraging":[171],"creation":[173],"watermarked":[175],"samples":[177],"detectable":[178],"HoneyModel":[181],"indistinguishable":[183],"from":[184],"others":[185],"for":[186],"adversary.":[188]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4205561027","counts_by_year":[{"year":2024,"cited_by_count":2}],"updated_date":"2024-12-11T23:42:59.333202","created_date":"2022-01-25"}