{"id":"https://openalex.org/W4206219477","doi":"https://doi.org/10.1109/milcom52596.2021.9652922","title":"Robust Solutions to Constrained Optimization Problems by LSTM Networks","display_name":"Robust Solutions to Constrained Optimization Problems by LSTM Networks","publication_year":2021,"publication_date":"2021-11-29","ids":{"openalex":"https://openalex.org/W4206219477","doi":"https://doi.org/10.1109/milcom52596.2021.9652922"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/milcom52596.2021.9652922","pdf_url":null,"source":{"id":"https://openalex.org/S4363608114","display_name":"MILCOM 2022 - 2022 IEEE Military Communications Conference (MILCOM)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":"http://spiral.imperial.ac.uk/bitstream/10044/1/101699/2/Constr-Opt-by-LSTMs-MILCOM21-submitted.pdf","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5101621047","display_name":"Zheyu Chen","orcid":"https://orcid.org/0000-0002-4017-1395"},"institutions":[{"id":"https://openalex.org/I47508984","display_name":"Imperial College London","ror":"https://ror.org/041kmwe10","country_code":"GB","type":"education","lineage":["https://openalex.org/I47508984"]}],"countries":["GB"],"is_corresponding":false,"raw_author_name":"Zheyu Chen","raw_affiliation_strings":["Imperial College, London, UK"],"affiliations":[{"raw_affiliation_string":"Imperial College, London, UK","institution_ids":["https://openalex.org/I47508984"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5020917506","display_name":"Kin K. Leung","orcid":"https://orcid.org/0000-0002-3860-6257"},"institutions":[{"id":"https://openalex.org/I47508984","display_name":"Imperial College London","ror":"https://ror.org/041kmwe10","country_code":"GB","type":"education","lineage":["https://openalex.org/I47508984"]}],"countries":["GB"],"is_corresponding":false,"raw_author_name":"Kin K. Leung","raw_affiliation_strings":["Imperial College, London, UK"],"affiliations":[{"raw_affiliation_string":"Imperial College, London, UK","institution_ids":["https://openalex.org/I47508984"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100443968","display_name":"Shiqiang Wang","orcid":"https://orcid.org/0000-0003-2090-5512"},"institutions":[{"id":"https://openalex.org/I4210114115","display_name":"IBM Research - Thomas J. Watson Research Center","ror":"https://ror.org/0265w5591","country_code":"US","type":"facility","lineage":["https://openalex.org/I1341412227","https://openalex.org/I4210114115"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Shiqiang Wang","raw_affiliation_strings":["IBM T.J. Watson Research Center, Yorktown Heights, NY, USA"],"affiliations":[{"raw_affiliation_string":"IBM T.J. Watson Research Center, Yorktown Heights, NY, USA","institution_ids":["https://openalex.org/I4210114115"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5014892027","display_name":"Leandros Tassiulas","orcid":"https://orcid.org/0000-0003-0932-774X"},"institutions":[{"id":"https://openalex.org/I32971472","display_name":"Yale University","ror":"https://ror.org/03v76x132","country_code":"US","type":"education","lineage":["https://openalex.org/I32971472"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Leandros Tassiulas","raw_affiliation_strings":["Yale University, New Haven, CT, USA"],"affiliations":[{"raw_affiliation_string":"Yale University, New Haven, CT, USA","institution_ids":["https://openalex.org/I32971472"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5057402438","display_name":"Kevin Chan","orcid":"https://orcid.org/0000-0002-6425-5403"},"institutions":[{"id":"https://openalex.org/I166416128","display_name":"DEVCOM Army Research Laboratory","ror":"https://ror.org/011hc8f90","country_code":"US","type":"government","lineage":["https://openalex.org/I1304082316","https://openalex.org/I1330347796","https://openalex.org/I166416128","https://openalex.org/I2802705668","https://openalex.org/I4210088792","https://openalex.org/I4210154437"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Kevin Chan","raw_affiliation_strings":["U.S. Army Research Lab, Adelphi, MD, USA"],"affiliations":[{"raw_affiliation_string":"U.S. Army Research Lab, Adelphi, MD, USA","institution_ids":["https://openalex.org/I166416128"]}]}],"institution_assertions":[],"countries_distinct_count":2,"institutions_distinct_count":4,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.102,"has_fulltext":true,"fulltext_origin":"pdf","cited_by_count":1,"citation_normalized_percentile":{"value":0.305691,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":57,"max":67},"biblio":{"volume":null,"issue":null,"first_page":"503","last_page":"508"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10320","display_name":"Neural Networks and Applications","score":0.9958,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10320","display_name":"Neural Networks and Applications","score":0.9958,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11344","display_name":"Traffic Prediction and Management Techniques","score":0.9935,"subfield":{"id":"https://openalex.org/subfields/2215","display_name":"Building and Construction"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11052","display_name":"Energy Load and Power Forecasting","score":0.9923,"subfield":{"id":"https://openalex.org/subfields/2208","display_name":"Electrical and Electronic Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.69935066},{"id":"https://openalex.org/C126255220","wikidata":"https://www.wikidata.org/wiki/Q141495","display_name":"Mathematical optimization","level":1,"score":0.42456692},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.38456404},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.15775144}],"mesh":[],"locations_count":2,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/milcom52596.2021.9652922","pdf_url":null,"source":{"id":"https://openalex.org/S4363608114","display_name":"MILCOM 2022 - 2022 IEEE Military Communications Conference (MILCOM)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"http://hdl.handle.net/10044/1/101699","pdf_url":"http://spiral.imperial.ac.uk/bitstream/10044/1/101699/2/Constr-Opt-by-LSTMs-MILCOM21-submitted.pdf","source":{"id":"https://openalex.org/S4306401396","display_name":"Spiral (Imperial College London)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I47508984","host_organization_name":"Imperial College London","host_organization_lineage":["https://openalex.org/I47508984"],"host_organization_lineage_names":["Imperial College London"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"http://hdl.handle.net/10044/1/101699","pdf_url":"http://spiral.imperial.ac.uk/bitstream/10044/1/101699/2/Constr-Opt-by-LSTMs-MILCOM21-submitted.pdf","source":{"id":"https://openalex.org/S4306401396","display_name":"Spiral (Imperial College London)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I47508984","host_organization_name":"Imperial College London","host_organization_lineage":["https://openalex.org/I47508984"],"host_organization_lineage_names":["Imperial College London"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[{"display_name":"Industry, innovation and infrastructure","id":"https://metadata.un.org/sdg/9","score":0.62}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":10,"referenced_works":["https://openalex.org/W2071848902","https://openalex.org/W2101395056","https://openalex.org/W2149207794","https://openalex.org/W2616867685","https://openalex.org/W2963775850","https://openalex.org/W2985805335","https://openalex.org/W2993653350","https://openalex.org/W2998540693","https://openalex.org/W3106780213","https://openalex.org/W3132256512"],"related_works":["https://openalex.org/W4402327032","https://openalex.org/W4396701345","https://openalex.org/W4396696052","https://openalex.org/W4391375266","https://openalex.org/W2748952813","https://openalex.org/W2390279801","https://openalex.org/W2382290278","https://openalex.org/W2376932109","https://openalex.org/W2358668433","https://openalex.org/W2001405890"],"abstract_inverted_index":{"Many":[0],"technical":[1],"issues":[2],"for":[3,113],"communications":[4],"and":[5,13,148,152,198,205,209],"computer":[6],"infrastructures,":[7],"including":[8],"resource":[9],"sharing,":[10],"network":[11],"management":[12],"distributed":[14],"analytics,":[15],"can":[16,65,118,157],"be":[17,119,158],"formulated":[18],"as":[19],"optimization":[20,85],"problems.":[21,32,86],"Gradient-based":[22],"iterative":[23,53],"algorithms":[24],"have":[25],"been":[26],"widely":[27],"utilized":[28],"to":[29,59,81,97,140,171],"solve":[30,82],"these":[31],"Much":[33],"research":[34],"focuses":[35],"on":[36],"improving":[37],"the":[38,52,99,128,132,145,149,154,176,179,191,195,199],"iteration":[39],"convergence.":[40],"However,":[41],"when":[42],"system":[43,73,161],"parameters":[44,162],"change,":[45],"it":[46,56],"requires":[47],"a":[48,70,78,114,185],"new":[49,106],"solution":[50,62,112,150,197],"from":[51,166,187],"methods.":[54],"Therefore,":[55],"is":[57,201],"helpful":[58],"develop":[60],"machine-learning":[61],"frameworks":[63],"that":[64,190],"quickly":[66],"produce":[67],"solutions":[68],"over":[69],"range":[71],"of":[72,104,137,178],"parameters.":[74],"We":[75],"propose":[76],"here":[77],"learning":[79,133,180],"approach":[80,134],"non-convex,":[83],"constrained":[84],"Two":[87],"coupled":[88],"Long":[89],"Short":[90],"Term":[91],"Memory":[92],"(LSTM)":[93],"networks":[94,156],"are":[95],"used":[96,168],"find":[98],"optimal":[100,111],"solution.":[101],"The":[102],"advantages":[103],"this":[105],"framework":[107],"include:":[108],"(1)":[109],"near":[110],"given":[115],"problem":[116],"instance":[117],"obtained":[120],"in":[121],"very":[122],"few":[123],"iterations":[124],"(time":[125],"steps)":[126],"during":[127,169],"inference":[129,170],"process,":[130],"(2)":[131],"allows":[135],"selections":[136],"various":[138],"hyper-parameters":[139],"achieve":[141],"desirable":[142],"tradeoffs":[143],"between":[144,194],"training":[146],"time":[147],"quality,":[151],"(3)":[153],"coupled-LSTM":[155],"trained":[159],"using":[160,184],"with":[163],"distributions":[164],"different":[165],"those":[167],"generate":[172],"solutions,":[173],"thus":[174],"enhancing":[175],"robustness":[177],"technique.":[181],"Numerical":[182],"experiments":[183],"dataset":[186],"Alibaba":[188],"reveal":[189],"relative":[192],"discrepancy":[193],"generated":[196],"optimum":[200],"less":[202],"than":[203],"1%":[204],"0.1%":[206],"after":[207],"2":[208],"12":[210],"iterations,":[211],"respectively.":[212]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4206219477","counts_by_year":[{"year":2022,"cited_by_count":1}],"updated_date":"2024-12-11T23:47:22.506131","created_date":"2022-01-25"}