{"id":"https://openalex.org/W4206344445","doi":"https://doi.org/10.1109/milcom52596.2021.9652881","title":"Improving Propagation Model Predictions via Machine Learning with Engineered Features","display_name":"Improving Propagation Model Predictions via Machine Learning with Engineered Features","publication_year":2021,"publication_date":"2021-11-29","ids":{"openalex":"https://openalex.org/W4206344445","doi":"https://doi.org/10.1109/milcom52596.2021.9652881"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/milcom52596.2021.9652881","pdf_url":null,"source":{"id":"https://openalex.org/S4363608114","display_name":"MILCOM 2022 - 2022 IEEE Military Communications Conference (MILCOM)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5037228465","display_name":"Ann Vanleer","orcid":null},"institutions":[{"id":"https://openalex.org/I189158971","display_name":"United States Naval Academy","ror":"https://ror.org/00znex860","country_code":"US","type":"education","lineage":["https://openalex.org/I1330347796","https://openalex.org/I189158971","https://openalex.org/I3130687028","https://openalex.org/I4399598358"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Ann Vanleer","raw_affiliation_strings":["Wireless Measurements Group, United States Naval Academy,Electrial and Computer Engineering Department,Annapolis,MD,21402"],"affiliations":[{"raw_affiliation_string":"Wireless Measurements Group, United States Naval Academy,Electrial and Computer Engineering Department,Annapolis,MD,21402","institution_ids":["https://openalex.org/I189158971"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5050353111","display_name":"Christopher R. Anderson","orcid":"https://orcid.org/0000-0001-9010-2630"},"institutions":[{"id":"https://openalex.org/I189158971","display_name":"United States Naval Academy","ror":"https://ror.org/00znex860","country_code":"US","type":"education","lineage":["https://openalex.org/I1330347796","https://openalex.org/I189158971","https://openalex.org/I3130687028","https://openalex.org/I4399598358"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Christopher R. Anderson","raw_affiliation_strings":["Wireless Measurements Group, United States Naval Academy,Electrial and Computer Engineering Department,Annapolis,MD,21402"],"affiliations":[{"raw_affiliation_string":"Wireless Measurements Group, United States Naval Academy,Electrial and Computer Engineering Department,Annapolis,MD,21402","institution_ids":["https://openalex.org/I189158971"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.367,"has_fulltext":false,"cited_by_count":1,"citation_normalized_percentile":{"value":0.364845,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":57,"max":67},"biblio":{"volume":null,"issue":null,"first_page":"420","last_page":"425"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10936","display_name":"Millimeter-Wave Propagation and Modeling","score":0.9993,"subfield":{"id":"https://openalex.org/subfields/2208","display_name":"Electrical and Electronic Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10936","display_name":"Millimeter-Wave Propagation and Modeling","score":0.9993,"subfield":{"id":"https://openalex.org/subfields/2208","display_name":"Electrical and Electronic Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T13121","display_name":"Radio Wave Propagation Studies","score":0.9968,"subfield":{"id":"https://openalex.org/subfields/2202","display_name":"Aerospace Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11234","display_name":"Precipitation Measurement and Analysis","score":0.9968,"subfield":{"id":"https://openalex.org/subfields/1902","display_name":"Atmospheric Science"},"field":{"id":"https://openalex.org/fields/19","display_name":"Earth and Planetary Sciences"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/baseline","display_name":"Baseline (sea)","score":0.7720127},{"id":"https://openalex.org/keywords/propagation-of-uncertainty","display_name":"Propagation of uncertainty","score":0.45703024}],"concepts":[{"id":"https://openalex.org/C12725497","wikidata":"https://www.wikidata.org/wiki/Q810247","display_name":"Baseline (sea)","level":2,"score":0.7720127},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.7239943},{"id":"https://openalex.org/C27158222","wikidata":"https://www.wikidata.org/wiki/Q5532422","display_name":"Generalizability theory","level":2,"score":0.7201152},{"id":"https://openalex.org/C132094186","wikidata":"https://www.wikidata.org/wiki/Q641585","display_name":"Clutter","level":3,"score":0.68589705},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.68365324},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.64320695},{"id":"https://openalex.org/C123614077","wikidata":"https://www.wikidata.org/wiki/Q1364905","display_name":"Propagation of uncertainty","level":2,"score":0.45703024},{"id":"https://openalex.org/C554190296","wikidata":"https://www.wikidata.org/wiki/Q47528","display_name":"Radar","level":2,"score":0.23135972},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.22946018},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.095394224},{"id":"https://openalex.org/C76155785","wikidata":"https://www.wikidata.org/wiki/Q418","display_name":"Telecommunications","level":1,"score":0.08470455},{"id":"https://openalex.org/C111368507","wikidata":"https://www.wikidata.org/wiki/Q43518","display_name":"Oceanography","level":1,"score":0.0},{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.0},{"id":"https://openalex.org/C127313418","wikidata":"https://www.wikidata.org/wiki/Q1069","display_name":"Geology","level":0,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/milcom52596.2021.9652881","pdf_url":null,"source":{"id":"https://openalex.org/S4363608114","display_name":"MILCOM 2022 - 2022 IEEE Military Communications Conference (MILCOM)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":9,"referenced_works":["https://openalex.org/W1939659009","https://openalex.org/W2199321793","https://openalex.org/W2616222121","https://openalex.org/W2770176403","https://openalex.org/W2936660115","https://openalex.org/W2980016373","https://openalex.org/W3002174765","https://openalex.org/W3009345526","https://openalex.org/W591169274"],"related_works":["https://openalex.org/W4375852175","https://openalex.org/W4306674287","https://openalex.org/W4287753411","https://openalex.org/W4224009465","https://openalex.org/W4206344445","https://openalex.org/W4200511449","https://openalex.org/W3037880068","https://openalex.org/W2961085424","https://openalex.org/W2357365693","https://openalex.org/W2110230818"],"abstract_inverted_index":{"Classical":[0],"propagation":[1,28,77,97,147],"models":[2,45],"currently":[3],"utilized":[4,33,91,164],"in":[5,19,23,53,61,100,128],"spectrum":[6,21],"management":[7],"have":[8,31,46],"a":[9,56,74,92,152,173],"limited":[10],"incorporation":[11],"of":[12,58,64,83,94,145,169,176],"foliage":[13],"and":[14,133,149],"clutter":[15,84],"effects":[16],"that":[17,36],"result":[18],"inefficient":[20],"utilization":[22],"modern":[24],"spectrum-sharing":[25],"scenarios.":[26],"Recent":[27],"modeling":[29],"efforts":[30],"increasingly":[32],"machine-learning":[34],"approaches":[35],"demonstrate":[37,166],"significantly":[38],"improved":[39],"performance.":[40],"Unfortunately,":[41],"pure":[42],"machine":[43,80,112],"learning":[44,81,113,150],"limitations":[47],"inherent":[48],"to":[49,55,110,165,172],"all":[50],"data-driven":[51],"techniques":[52],"addition":[54],"lack":[57],"theoretical":[59],"grounding":[60],"the":[62,88,105,143,156,167],"physics":[63],"wave":[65],"propagation.":[66],"This":[67],"manuscript":[68],"presents":[69],"an":[70],"alternative":[71],"approach,":[72],"augmenting":[73],"physics-based":[75],"baseline":[76,146,158],"model":[78,126,134,148,159],"with":[79],"predictions":[82],"losses.":[85],"To":[86],"develop":[87],"model,":[89],"we":[90],"dataset":[93],"approximately":[95],"368,000":[96],"measurements":[98,132],"recorded":[99],"nine":[101],"diverse":[102],"locations":[103],"across":[104],"United":[106],"States.":[107],"Features":[108],"input":[109],"several":[111],"algorithms":[114],"were":[115],"derived":[116],"from":[117,136,155],"publicly":[118],"available":[119],"geographic":[120],"information":[121],"system":[122],"datasets.":[123],"Our":[124],"hybrid":[125],"results":[127],"RMS":[129],"difference":[130],"between":[131],"ranging":[135],"3.7":[137],"\u2013":[138],"4.95":[139],"dB":[140],"depending":[141],"on":[142],"choice":[144],"technique,":[151],"vast":[153],"improvement":[154],"individual":[157],"predictions.":[160],"Finally,":[161],"cross-validation":[162],"was":[163],"generalizability":[168],"our":[170],"approach":[171],"wide":[174],"variety":[175],"environments.":[177]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4206344445","counts_by_year":[{"year":2024,"cited_by_count":1}],"updated_date":"2024-12-12T04:37:17.270906","created_date":"2022-01-26"}