{"id":"https://openalex.org/W4362681125","doi":"https://doi.org/10.1109/mhs56725.2022.10092140","title":"Pre-training on physical dynamics enhances indirect sensing in recurrent neural networks","display_name":"Pre-training on physical dynamics enhances indirect sensing in recurrent neural networks","publication_year":2022,"publication_date":"2022-11-27","ids":{"openalex":"https://openalex.org/W4362681125","doi":"https://doi.org/10.1109/mhs56725.2022.10092140"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/mhs56725.2022.10092140","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5068093651","display_name":"Mitsuhiro Nishida","orcid":"https://orcid.org/0000-0002-2440-7716"},"institutions":[{"id":"https://openalex.org/I91443412","display_name":"Bridgestone (Japan)","ror":"https://ror.org/04trbvb35","country_code":"JP","type":"company","lineage":["https://openalex.org/I91443412"]}],"countries":["JP"],"is_corresponding":false,"raw_author_name":"Mitsuhiro Nishida","raw_affiliation_strings":["BridgestoneCorporation, Ogawahigashicho,KodairaCity,,DigitalEngineeringDepartment,Tokyo,Japan,187-8531"],"affiliations":[{"raw_affiliation_string":"BridgestoneCorporation, Ogawahigashicho,KodairaCity,,DigitalEngineeringDepartment,Tokyo,Japan,187-8531","institution_ids":["https://openalex.org/I91443412"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5050794838","display_name":"Ryo Sakurai","orcid":null},"institutions":[{"id":"https://openalex.org/I91443412","display_name":"Bridgestone (Japan)","ror":"https://ror.org/04trbvb35","country_code":"JP","type":"company","lineage":["https://openalex.org/I91443412"]}],"countries":["JP"],"is_corresponding":false,"raw_author_name":"Ryo Sakurai","raw_affiliation_strings":["BridgestoneCorporation, Ogawahigashicho,KodairaCity,,DigitalEngineeringDepartment,Tokyo,Japan,187-8531"],"affiliations":[{"raw_affiliation_string":"BridgestoneCorporation, Ogawahigashicho,KodairaCity,,DigitalEngineeringDepartment,Tokyo,Japan,187-8531","institution_ids":["https://openalex.org/I91443412"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5068498274","display_name":"Yasumichi Wakao","orcid":"https://orcid.org/0000-0002-0628-7909"},"institutions":[{"id":"https://openalex.org/I91443412","display_name":"Bridgestone (Japan)","ror":"https://ror.org/04trbvb35","country_code":"JP","type":"company","lineage":["https://openalex.org/I91443412"]}],"countries":["JP"],"is_corresponding":false,"raw_author_name":"Yasumichi Wakao","raw_affiliation_strings":["Bridgestone Corporation, Ogawahigashicho,KodairaCity,AdvancedMaterialDepartment,Tokyo,Japan,187-8531"],"affiliations":[{"raw_affiliation_string":"Bridgestone Corporation, Ogawahigashicho,KodairaCity,AdvancedMaterialDepartment,Tokyo,Japan,187-8531","institution_ids":["https://openalex.org/I91443412"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5065659757","display_name":"Kohei Nakajima","orcid":"https://orcid.org/0000-0001-5589-4054"},"institutions":[{"id":"https://openalex.org/I74801974","display_name":"The University of Tokyo","ror":"https://ror.org/057zh3y96","country_code":"JP","type":"education","lineage":["https://openalex.org/I74801974"]}],"countries":["JP"],"is_corresponding":false,"raw_author_name":"Kohei Nakajima","raw_affiliation_strings":["The Universityo f Tokyo, Bunkyo-ku,InformationScienceandTechnology,Tokyo,Japan,113-8656"],"affiliations":[{"raw_affiliation_string":"The Universityo f Tokyo, Bunkyo-ku,InformationScienceandTechnology,Tokyo,Japan,113-8656","institution_ids":["https://openalex.org/I74801974"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":2,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.162,"has_fulltext":false,"cited_by_count":1,"citation_normalized_percentile":{"value":0.418212,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":60,"max":70},"biblio":{"volume":null,"issue":null,"first_page":"1","last_page":"7"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T12611","display_name":"Neural Networks and Reservoir Computing","score":1.0,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T12611","display_name":"Neural Networks and Reservoir Computing","score":1.0,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10502","display_name":"Advanced Memory and Neural Computing","score":0.9987,"subfield":{"id":"https://openalex.org/subfields/2208","display_name":"Electrical and Electronic Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10581","display_name":"Neural dynamics and brain function","score":0.9848,"subfield":{"id":"https://openalex.org/subfields/2805","display_name":"Cognitive Neuroscience"},"field":{"id":"https://openalex.org/fields/28","display_name":"Neuroscience"},"domain":{"id":"https://openalex.org/domains/1","display_name":"Life Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/internal-pressure","display_name":"Internal pressure","score":0.52587223},{"id":"https://openalex.org/keywords/internal-resistance","display_name":"Internal resistance","score":0.49983096},{"id":"https://openalex.org/keywords/electrical-load","display_name":"Electrical load","score":0.43290746}],"concepts":[{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.62648845},{"id":"https://openalex.org/C90509273","wikidata":"https://www.wikidata.org/wiki/Q11012","display_name":"Robot","level":2,"score":0.60654354},{"id":"https://openalex.org/C47446073","wikidata":"https://www.wikidata.org/wiki/Q5165890","display_name":"Control theory (sociology)","level":3,"score":0.5464375},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.5298419},{"id":"https://openalex.org/C18747710","wikidata":"https://www.wikidata.org/wiki/Q1663889","display_name":"Internal pressure","level":2,"score":0.52587223},{"id":"https://openalex.org/C106945098","wikidata":"https://www.wikidata.org/wiki/Q2527701","display_name":"Internal resistance","level":4,"score":0.49983096},{"id":"https://openalex.org/C41325743","wikidata":"https://www.wikidata.org/wiki/Q1261040","display_name":"Pressure sensor","level":2,"score":0.46963382},{"id":"https://openalex.org/C139945424","wikidata":"https://www.wikidata.org/wiki/Q1940696","display_name":"Mean squared error","level":2,"score":0.45554796},{"id":"https://openalex.org/C122383733","wikidata":"https://www.wikidata.org/wiki/Q865920","display_name":"Approximation error","level":2,"score":0.44690934},{"id":"https://openalex.org/C77715397","wikidata":"https://www.wikidata.org/wiki/Q931447","display_name":"Electrical load","level":3,"score":0.43290746},{"id":"https://openalex.org/C94857076","wikidata":"https://www.wikidata.org/wiki/Q106603432","display_name":"Electrical resistance and conductance","level":2,"score":0.4244537},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.38073894},{"id":"https://openalex.org/C44154836","wikidata":"https://www.wikidata.org/wiki/Q45045","display_name":"Simulation","level":1,"score":0.37010336},{"id":"https://openalex.org/C127413603","wikidata":"https://www.wikidata.org/wiki/Q11023","display_name":"Engineering","level":0,"score":0.27147725},{"id":"https://openalex.org/C2775924081","wikidata":"https://www.wikidata.org/wiki/Q55608371","display_name":"Control (management)","level":2,"score":0.21935531},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.17301947},{"id":"https://openalex.org/C192562407","wikidata":"https://www.wikidata.org/wiki/Q228736","display_name":"Materials science","level":0,"score":0.17218858},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.17178929},{"id":"https://openalex.org/C163258240","wikidata":"https://www.wikidata.org/wiki/Q25342","display_name":"Power (physics)","level":2,"score":0.14896044},{"id":"https://openalex.org/C119599485","wikidata":"https://www.wikidata.org/wiki/Q43035","display_name":"Electrical engineering","level":1,"score":0.14122367},{"id":"https://openalex.org/C78519656","wikidata":"https://www.wikidata.org/wiki/Q101333","display_name":"Mechanical engineering","level":1,"score":0.12801337},{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.10956657},{"id":"https://openalex.org/C165801399","wikidata":"https://www.wikidata.org/wiki/Q25428","display_name":"Voltage","level":2,"score":0.08743417},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C555008776","wikidata":"https://www.wikidata.org/wiki/Q267298","display_name":"Battery (electricity)","level":3,"score":0.0},{"id":"https://openalex.org/C62520636","wikidata":"https://www.wikidata.org/wiki/Q944","display_name":"Quantum mechanics","level":1,"score":0.0},{"id":"https://openalex.org/C159985019","wikidata":"https://www.wikidata.org/wiki/Q181790","display_name":"Composite material","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/mhs56725.2022.10092140","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":33,"referenced_works":["https://openalex.org/W1626936613","https://openalex.org/W1973613062","https://openalex.org/W1986891624","https://openalex.org/W2045416664","https://openalex.org/W2047166537","https://openalex.org/W2079329690","https://openalex.org/W2083886793","https://openalex.org/W2099231026","https://openalex.org/W2118706537","https://openalex.org/W2344182571","https://openalex.org/W2761159697","https://openalex.org/W2810182305","https://openalex.org/W3035814335","https://openalex.org/W3100560308","https://openalex.org/W3102823465","https://openalex.org/W3107724495","https://openalex.org/W3130984032","https://openalex.org/W3163993681","https://openalex.org/W3186424566","https://openalex.org/W3192915838","https://openalex.org/W3196800676","https://openalex.org/W3214007446","https://openalex.org/W3215054290","https://openalex.org/W4200380717","https://openalex.org/W4200437589","https://openalex.org/W4224237284","https://openalex.org/W4224306490","https://openalex.org/W4225159461","https://openalex.org/W4285154232","https://openalex.org/W4285324032","https://openalex.org/W4285324034","https://openalex.org/W4291804749","https://openalex.org/W4296467202"],"related_works":["https://openalex.org/W4399399309","https://openalex.org/W4206410031","https://openalex.org/W3127162005","https://openalex.org/W3107566091","https://openalex.org/W2802993111","https://openalex.org/W2611357629","https://openalex.org/W2384291734","https://openalex.org/W2370231831","https://openalex.org/W2149693413","https://openalex.org/W1971510336"],"abstract_inverted_index":{"A":[0],"McKibben-type":[1],"pneumatic":[2],"artificial":[3],"muscle":[4],"(PAM),":[5],"which":[6,166],"can":[7,87],"achieve":[8],"a":[9,14,82,93,194],"large":[10],"contraction":[11],"force,":[12],"is":[13,65,99,167],"promising":[15],"candidate":[16],"for":[17,31],"the":[18,36,42,45,52,69,102,105,115,122,129,132,136,147,154,160,177,182,188,207,209,213,221,225,235,239,251,262,268,271,276,288,298,303],"actuation":[19],"of":[20,41,56,71,96,108,131,170,212,300],"soft":[21,57],"robots.":[22],"Currently,":[23],"to":[24,48,67,146,261,266],"control":[25],"PAMs,":[26],"many":[27],"sensors":[28,72,126],"are":[29,305],"required":[30],"controlling":[32],"factors":[33],"such":[34],"as":[35,73,75],"length":[37,91,125,130,214,236,272],"and":[38,44,54,59,124,127,139,159,185,197,228,232,245,254,264,297],"internal":[39,137,183,229,246],"pressure":[40,138,184,230,247],"PAM,":[43],"load":[46,123,144,178,189,203,244],"applied":[47,145],"it.":[49],"To":[50],"reduce":[51,68],"weight":[53],"cost":[55],"robots":[58],"keep":[60],"their":[61],"characteristics":[62],"intact,":[63],"it":[64,283],"important":[66],"number":[70,95],"much":[74],"possible.":[76],"In":[77,220],"this":[78,201,295],"study,":[79],"we":[80,120,223,233],"propose":[81],"machine":[83],"learning":[84],"scheme":[85],"that":[86,293],"accurately":[88],"predict":[89,267],"PAM":[90,109,133,148],"using":[92,134,237],"small":[94],"sensors.":[97,142],"This":[98],"realized":[100],"through":[101],"pre-training":[103],"on":[104],"physical":[106],"property":[107],"in":[110,302,307],"recurrent":[111],"neural":[112],"networks":[113],"under":[114],"reservoir":[116,263,304],"computing":[117],"framework.":[118],"First,":[119],"removed":[121,224],"predicted":[128,180,192,234,249,256,285],"only":[135,238],"electrical":[140,186,240,252,289],"resistance":[141,241],"The":[143,243,291],"greatly":[149,216],"affected":[150],"its":[151],"length,":[152,227],"so":[153],"prediction":[155,210,277],"accuracy":[156,211,278],"was":[157,172,179,204,215,273,279,284],"low,":[158],"normalized":[161],"mean":[162],"square":[163],"error":[164],"(NMSE),":[165],"an":[168],"index":[169],"error,":[171],"NMSE":[173],"=0.220.":[174],"However,":[175],"when":[176,198,282],"from":[181,200,250,286],"resistance,":[187,253],"could":[190],"be":[191],"with":[193],"high":[195],"accuracy,":[196],"self-feedback":[199],"emulated":[202],"added":[205],"into":[206],"reservoir,":[208],"improved":[217],"(NMSE":[218],"=0.0330).":[219],"end,":[222],"load,":[226],"sensors,":[231],"sensor.":[242],"were":[248,258],"these":[255],"values":[257],"fed":[259],"back":[260],"used":[265],"length.":[269],"When":[270],"finally":[274],"predicted,":[275],"higher":[280],"than":[281],"just":[287],"resistance.":[290],"mechanisms":[292],"supported":[294],"improvement":[296],"role":[299],"feedback":[301],"discussed":[306],"detail.":[308]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4362681125","counts_by_year":[{"year":2024,"cited_by_count":1}],"updated_date":"2025-01-05T09:50:15.105859","created_date":"2023-04-08"}