{"id":"https://openalex.org/W4382050614","doi":"https://doi.org/10.1109/meco58584.2023.10155011","title":"Uncertainty Aware Deep Learning Model for Secure and Trustworthy Channel Estimation in 5G Networks","display_name":"Uncertainty Aware Deep Learning Model for Secure and Trustworthy Channel Estimation in 5G Networks","publication_year":2023,"publication_date":"2023-06-06","ids":{"openalex":"https://openalex.org/W4382050614","doi":"https://doi.org/10.1109/meco58584.2023.10155011"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/meco58584.2023.10155011","pdf_url":null,"source":{"id":"https://openalex.org/S4363608204","display_name":"2022 11th Mediterranean Conference on Embedded Computing (MECO)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/pdf/2305.02741","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5044259885","display_name":"Ferhat \u00d6zg\u00fcr \u00c7atak","orcid":"https://orcid.org/0000-0002-2434-9966"},"institutions":[{"id":"https://openalex.org/I92008406","display_name":"University of Stavanger","ror":"https://ror.org/02qte9q33","country_code":"NO","type":"education","lineage":["https://openalex.org/I92008406"]}],"countries":["NO"],"is_corresponding":false,"raw_author_name":"Ferhat Ozgur Catak","raw_affiliation_strings":["Dept. of Electrical Engineering and Computer Science, University of Stavanger, Stavanger, Norway"],"affiliations":[{"raw_affiliation_string":"Dept. of Electrical Engineering and Computer Science, University of Stavanger, Stavanger, Norway","institution_ids":["https://openalex.org/I92008406"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5082630876","display_name":"\u00dcmit Cali","orcid":"https://orcid.org/0000-0002-6402-0479"},"institutions":[{"id":"https://openalex.org/I204778367","display_name":"Norwegian University of Science and Technology","ror":"https://ror.org/05xg72x27","country_code":"NO","type":"education","lineage":["https://openalex.org/I204778367"]}],"countries":["NO"],"is_corresponding":false,"raw_author_name":"Umit Cali","raw_affiliation_strings":["Department of Electric Power Engineering, Norwegian University of Science and Technology, Trondheim, Norway"],"affiliations":[{"raw_affiliation_string":"Department of Electric Power Engineering, Norwegian University of Science and Technology, Trondheim, Norway","institution_ids":["https://openalex.org/I204778367"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5091398081","display_name":"Murat Kuzlu","orcid":"https://orcid.org/0000-0002-8719-2353"},"institutions":[{"id":"https://openalex.org/I81365321","display_name":"Old Dominion University","ror":"https://ror.org/04zjtrb98","country_code":"US","type":"education","lineage":["https://openalex.org/I81365321"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Murat Kuzlu","raw_affiliation_strings":["Electrical Engineering Technology, Old Dominion University, Norfolk, VA, USA"],"affiliations":[{"raw_affiliation_string":"Electrical Engineering Technology, Old Dominion University, Norfolk, VA, USA","institution_ids":["https://openalex.org/I81365321"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5064048647","display_name":"Salih Sarp","orcid":"https://orcid.org/0000-0001-6674-2590"},"institutions":[{"id":"https://openalex.org/I184840846","display_name":"Virginia Commonwealth University","ror":"https://ror.org/02nkdxk79","country_code":"US","type":"education","lineage":["https://openalex.org/I184840846"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Salih Sarp","raw_affiliation_strings":["Electrical and Computer Engineering, Virginia Commonwealth University, Richmond, VA, USA"],"affiliations":[{"raw_affiliation_string":"Electrical and Computer Engineering, Virginia Commonwealth University, Richmond, VA, USA","institution_ids":["https://openalex.org/I184840846"]}]}],"institution_assertions":[],"countries_distinct_count":2,"institutions_distinct_count":4,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.403,"has_fulltext":false,"cited_by_count":1,"citation_normalized_percentile":{"value":0.626095,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":69,"max":80},"biblio":{"volume":"abs11811 6817","issue":null,"first_page":"1","last_page":"4"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T12131","display_name":"Deep Learning for Wireless Signal Classification","score":0.9996,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T12131","display_name":"Deep Learning for Wireless Signal Classification","score":0.9996,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10964","display_name":"Physical Layer Security in Wireless Communications","score":0.9995,"subfield":{"id":"https://openalex.org/subfields/2208","display_name":"Electrical and Electronic Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11689","display_name":"Adversarial Robustness in Deep Learning Models","score":0.9974,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/channel-estimation","display_name":"Channel Estimation","score":0.571803},{"id":"https://openalex.org/keywords/uncertainty-estimation","display_name":"Uncertainty Estimation","score":0.523331},{"id":"https://openalex.org/keywords/deep-learning","display_name":"Deep Learning","score":0.509316},{"id":"https://openalex.org/keywords/trustworthiness","display_name":"Trustworthiness","score":0.42111307}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.80987966},{"id":"https://openalex.org/C108583219","wikidata":"https://www.wikidata.org/wiki/Q197536","display_name":"Deep learning","level":2,"score":0.70099336},{"id":"https://openalex.org/C127162648","wikidata":"https://www.wikidata.org/wiki/Q16858953","display_name":"Channel (broadcasting)","level":2,"score":0.60054964},{"id":"https://openalex.org/C43214815","wikidata":"https://www.wikidata.org/wiki/Q7310987","display_name":"Reliability (semiconductor)","level":3,"score":0.5205244},{"id":"https://openalex.org/C2780233690","wikidata":"https://www.wikidata.org/wiki/Q535347","display_name":"Transparency (behavior)","level":2,"score":0.51294726},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.50084066},{"id":"https://openalex.org/C153701036","wikidata":"https://www.wikidata.org/wiki/Q659974","display_name":"Trustworthiness","level":2,"score":0.42111307},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.4066123},{"id":"https://openalex.org/C38652104","wikidata":"https://www.wikidata.org/wiki/Q3510521","display_name":"Computer security","level":1,"score":0.36598474},{"id":"https://openalex.org/C31258907","wikidata":"https://www.wikidata.org/wiki/Q1301371","display_name":"Computer network","level":1,"score":0.2830305},{"id":"https://openalex.org/C163258240","wikidata":"https://www.wikidata.org/wiki/Q25342","display_name":"Power (physics)","level":2,"score":0.0},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C62520636","wikidata":"https://www.wikidata.org/wiki/Q944","display_name":"Quantum mechanics","level":1,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/meco58584.2023.10155011","pdf_url":null,"source":{"id":"https://openalex.org/S4363608204","display_name":"2022 11th Mediterranean Conference on Embedded Computing (MECO)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2305.02741","pdf_url":"https://arxiv.org/pdf/2305.02741","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2305.02741","pdf_url":"https://arxiv.org/pdf/2305.02741","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[{"display_name":"Peace, justice, and strong institutions","id":"https://metadata.un.org/sdg/16","score":0.79}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":10,"referenced_works":["https://openalex.org/W2228801089","https://openalex.org/W2901453561","https://openalex.org/W3013042142","https://openalex.org/W3046558251","https://openalex.org/W3089346405","https://openalex.org/W3166168772","https://openalex.org/W3201301682","https://openalex.org/W4253178971","https://openalex.org/W4306404078","https://openalex.org/W4315783190"],"related_works":["https://openalex.org/W4382930947","https://openalex.org/W3214759741","https://openalex.org/W3174876210","https://openalex.org/W3152382318","https://openalex.org/W3081288631","https://openalex.org/W3004686567","https://openalex.org/W2738656338","https://openalex.org/W2603787370","https://openalex.org/W2555400967","https://openalex.org/W2388458847"],"abstract_inverted_index":{"With":[0],"the":[1,13,27,70,98,116,129],"rise":[2],"of":[3,17,26,31,100],"intelligent":[4],"applications,":[5],"such":[6],"as":[7,112],"self-driving":[8],"cars":[9],"and":[10,15,45,62,69,88,102,132,143,150],"augmented":[11],"reality,":[12],"security":[14,61,131],"reliability":[16],"wireless":[18],"communication":[19],"systems":[20],"have":[21],"become":[22],"increasingly":[23],"crucial.":[24],"One":[25],"most":[28],"critical":[29],"components":[30],"ensuring":[32],"a":[33,80,113],"high-quality":[34],"experience":[35],"is":[36,40],"channel":[37,58,90,110],"estimation,":[38],"which":[39],"fundamental":[41],"for":[42,72,86],"efficient":[43],"transmission":[44],"interference":[46],"management":[47],"in":[48,57,75,92,115,152],"wire-less":[49],"networks.":[50,94],"However,":[51],"using":[52],"deep":[53,103,117,144],"neural":[54],"networks":[55],"(DNNs)":[56],"estimation":[59,91,111],"raises":[60],"trust":[63],"concerns":[64],"due":[65],"to":[66,124],"their":[67],"complexity":[68],"need":[71],"more":[73],"transparency":[74],"decision-making.":[76],"This":[77],"paper":[78],"proposes":[79],"Monte":[81],"Carlo":[82],"Dropout":[83],"(MCDO)-based":[84],"approach":[85,96,140],"secure":[87],"trustworthy":[89],"5G":[93],"Our":[95,134],"combines":[97],"advantages":[99],"traditional":[101,142],"learning":[104,118],"techniques":[105],"by":[106],"incorporating":[107],"conventional":[108],"pilot-based":[109],"prior":[114],"model.":[119],"Additionally,":[120],"we":[121],"use":[122],"MCDO":[123],"obtain":[125],"uncertainty-aware":[126],"predictions,":[127],"enhancing":[128],"model's":[130],"trustworthiness.":[133],"experiments":[135],"demonstrate":[136],"that":[137],"our":[138],"proposed":[139],"outper-forms":[141],"learning-based":[145],"approaches":[146],"regarding":[147],"security,":[148],"trustworthiness,":[149],"performance":[151],"SG":[153],"scenarios.":[154]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4382050614","counts_by_year":[{"year":2024,"cited_by_count":1}],"updated_date":"2024-11-22T00:55:52.841869","created_date":"2023-06-27"}