{"id":"https://openalex.org/W4390944860","doi":"https://doi.org/10.1109/mcsoc60832.2023.00074","title":"Selective Pruning of Sparsity-Supported Energy-Efficient Accelerator for Convolutional Neural Networks","display_name":"Selective Pruning of Sparsity-Supported Energy-Efficient Accelerator for Convolutional Neural Networks","publication_year":2023,"publication_date":"2023-12-18","ids":{"openalex":"https://openalex.org/W4390944860","doi":"https://doi.org/10.1109/mcsoc60832.2023.00074"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/mcsoc60832.2023.00074","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5020129162","display_name":"Chia\u2010Chi Liu","orcid":"https://orcid.org/0000-0003-0801-5234"},"institutions":[{"id":"https://openalex.org/I152815399","display_name":"Singapore University of Technology and Design","ror":"https://ror.org/05j6fvn87","country_code":"SG","type":"education","lineage":["https://openalex.org/I152815399"]}],"countries":["SG"],"is_corresponding":false,"raw_author_name":"Chia-Chi Liu","raw_affiliation_strings":["Nano-Electronic Engineering and Design, Singapore University of Technology and Design, Singapore, Singapore"],"affiliations":[{"raw_affiliation_string":"Nano-Electronic Engineering and Design, Singapore University of Technology and Design, Singapore, Singapore","institution_ids":["https://openalex.org/I152815399"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5005575420","display_name":"I\u2010Chyn Wey","orcid":"https://orcid.org/0000-0003-3412-6958"},"institutions":[{"id":"https://openalex.org/I173093425","display_name":"Chang Gung University","ror":"https://ror.org/00d80zx46","country_code":"TW","type":"education","lineage":["https://openalex.org/I173093425"]}],"countries":["TW"],"is_corresponding":false,"raw_author_name":"I-Chyn Wey","raw_affiliation_strings":["Department of Electrical Engineering, Chang Gung University, Taoyuan, Taiwan"],"affiliations":[{"raw_affiliation_string":"Department of Electrical Engineering, Chang Gung University, Taoyuan, Taiwan","institution_ids":["https://openalex.org/I173093425"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5101631655","display_name":"Xuezhi Zhang","orcid":"https://orcid.org/0000-0001-9241-251X"},"institutions":[{"id":"https://openalex.org/I152815399","display_name":"Singapore University of Technology and Design","ror":"https://ror.org/05j6fvn87","country_code":"SG","type":"education","lineage":["https://openalex.org/I152815399"]}],"countries":["SG"],"is_corresponding":false,"raw_author_name":"Xuezhi Zhang","raw_affiliation_strings":["Nano-Electronic Engineering and Design, Singapore University of Technology and Design, Singapore, Singapore"],"affiliations":[{"raw_affiliation_string":"Nano-Electronic Engineering and Design, Singapore University of Technology and Design, Singapore, Singapore","institution_ids":["https://openalex.org/I152815399"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5087192549","display_name":"T. Hui Teo","orcid":"https://orcid.org/0000-0003-2123-9347"},"institutions":[{"id":"https://openalex.org/I152815399","display_name":"Singapore University of Technology and Design","ror":"https://ror.org/05j6fvn87","country_code":"SG","type":"education","lineage":["https://openalex.org/I152815399"]}],"countries":["SG"],"is_corresponding":false,"raw_author_name":"T. Hui Teo","raw_affiliation_strings":["Engineering Product Development, Singapore University of Technology and Design, Singapore, Singapore"],"affiliations":[{"raw_affiliation_string":"Engineering Product Development, Singapore University of Technology and Design, Singapore, Singapore","institution_ids":["https://openalex.org/I152815399"]}]}],"institution_assertions":[],"countries_distinct_count":2,"institutions_distinct_count":2,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.0,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":67},"biblio":{"volume":"28","issue":null,"first_page":"454","last_page":"461"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10036","display_name":"Advanced Neural Network Applications","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10036","display_name":"Advanced Neural Network Applications","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12702","display_name":"Brain Tumor Detection and Classification","score":0.9982,"subfield":{"id":"https://openalex.org/subfields/2808","display_name":"Neurology"},"field":{"id":"https://openalex.org/fields/28","display_name":"Neuroscience"},"domain":{"id":"https://openalex.org/domains/1","display_name":"Life Sciences"}},{"id":"https://openalex.org/T12676","display_name":"Machine Learning and ELM","score":0.9966,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/pruning","display_name":"Pruning","score":0.71118987}],"concepts":[{"id":"https://openalex.org/C28855332","wikidata":"https://www.wikidata.org/wiki/Q198099","display_name":"Quantization (signal processing)","level":2,"score":0.7888402},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.7855505},{"id":"https://openalex.org/C108010975","wikidata":"https://www.wikidata.org/wiki/Q500094","display_name":"Pruning","level":2,"score":0.71118987},{"id":"https://openalex.org/C81363708","wikidata":"https://www.wikidata.org/wiki/Q17084460","display_name":"Convolutional neural network","level":2,"score":0.69729054},{"id":"https://openalex.org/C2780165032","wikidata":"https://www.wikidata.org/wiki/Q16869822","display_name":"Energy consumption","level":2,"score":0.56360245},{"id":"https://openalex.org/C113775141","wikidata":"https://www.wikidata.org/wiki/Q428691","display_name":"Computer engineering","level":1,"score":0.49872184},{"id":"https://openalex.org/C108583219","wikidata":"https://www.wikidata.org/wiki/Q197536","display_name":"Deep learning","level":2,"score":0.492431},{"id":"https://openalex.org/C2742236","wikidata":"https://www.wikidata.org/wiki/Q924713","display_name":"Efficient energy use","level":2,"score":0.45645592},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.45385465},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.31126982},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.2695905},{"id":"https://openalex.org/C127413603","wikidata":"https://www.wikidata.org/wiki/Q11023","display_name":"Engineering","level":0,"score":0.07076368},{"id":"https://openalex.org/C119599485","wikidata":"https://www.wikidata.org/wiki/Q43035","display_name":"Electrical engineering","level":1,"score":0.0},{"id":"https://openalex.org/C6557445","wikidata":"https://www.wikidata.org/wiki/Q173113","display_name":"Agronomy","level":1,"score":0.0},{"id":"https://openalex.org/C86803240","wikidata":"https://www.wikidata.org/wiki/Q420","display_name":"Biology","level":0,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/mcsoc60832.2023.00074","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"display_name":"Affordable and clean energy","id":"https://metadata.un.org/sdg/7","score":0.9}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":20,"referenced_works":["https://openalex.org/W1686810756","https://openalex.org/W2112796928","https://openalex.org/W2119144962","https://openalex.org/W2289252105","https://openalex.org/W2520760693","https://openalex.org/W2707890836","https://openalex.org/W2750173518","https://openalex.org/W2883920103","https://openalex.org/W2886851211","https://openalex.org/W2891999520","https://openalex.org/W2913190747","https://openalex.org/W2962851801","https://openalex.org/W2962944050","https://openalex.org/W2962965870","https://openalex.org/W2963363373","https://openalex.org/W2963367920","https://openalex.org/W2963393494","https://openalex.org/W2963981420","https://openalex.org/W2965862774","https://openalex.org/W3043504674"],"related_works":["https://openalex.org/W3214410901","https://openalex.org/W3204400881","https://openalex.org/W3204296682","https://openalex.org/W3183118997","https://openalex.org/W3013241373","https://openalex.org/W2917767146","https://openalex.org/W2594301978","https://openalex.org/W2378744544","https://openalex.org/W2373300491","https://openalex.org/W179829755"],"abstract_inverted_index":{"Convolutional":[0],"Neural":[1],"Networks":[2],"(CNNs)":[3],"are":[4,54],"widely":[5],"used":[6],"in":[7,66],"various":[8],"fields":[9],"with":[10],"the":[11,19,29,35,46,57,63,78,90,134,151,176,180,184],"rapid":[12],"development":[13],"of":[14,22,34,45,56,80,136,153,166,175],"Deep":[15],"Learning":[16],"(DL).":[17],"However,":[18,89],"massive":[20],"amount":[21],"parameters":[23,81],"and":[24,32,50,52,72,86,100,118,128,144,158,192],"huge":[25],"models":[26],"severely":[27],"limit":[28],"calculation":[30],"speed":[31],"performance":[33],"model.":[36],"To":[37],"address":[38],"this,":[39],"model":[40],"compression":[41],"has":[42],"become":[43],"one":[44,174],"most":[47,58],"popular":[48],"methods,":[49],"quantization":[51,120,129],"pruning":[53,76,138],"two":[55],"common":[59],"techniques.":[60],"Quantization":[61,172],"reduces":[62,77,183],"bit":[64],"width":[65],"exchange":[67],"for":[68],"lower":[69],"power":[70,102,188,200],"consumption":[71,103,189],"computing":[73,193],"time,":[74],"while":[75],"number":[79],"to":[82,97,112,125,139,149,169],"reduce":[83],"memory":[84],"access":[85],"operation":[87],"time.":[88],"existing":[91],"hardware":[92,143,178],"architecture":[93],"is":[94],"still":[95],"unable":[96],"satisfy":[98],"real-time":[99],"low":[101],"requirements":[104],"simultaneously.":[105],"Therefore,":[106],"scholars":[107],"have":[108],"been":[109],"paying":[110],"attention":[111],"Application":[113],"Specific":[114],"Integrated":[115],"Circuits":[116],"(ASICs)":[117],"low-bit":[119],"co-optimization.":[121],"This":[122],"paper":[123],"aims":[124],"co-design":[126],"sparsity":[127,142],"energy-saving":[130,154],"accelerators.":[131],"It":[132],"uses":[133],"characteristics":[135],"selective":[137],"design":[140],"low-cost":[141,146],"employs":[145],"comparison":[147],"circuits":[148],"solve":[150],"problem":[152],"data":[155],"flow":[156],"dependencies":[157],"improve":[159],"traditional":[160],"low-efficiency":[161],"non-real-time":[162],"methods.":[163],"In":[164],"terms":[165],"hardware,":[167],"compared":[168],"Dynamic":[170],"Region-based":[171],"(DRQ),":[173],"state-of-the-art":[177],"accelerators,":[179],"proposed":[181],"network":[182],"area":[185],"by":[186,190,195,202],"43.22%,":[187],"52.17%,":[191],"time":[194],"25.36%.":[196],"Additionally,":[197],"it":[198],"increases":[199],"efficiency":[201],"1.29":[203],"times.":[204]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4390944860","counts_by_year":[],"updated_date":"2025-01-02T09:41:44.276669","created_date":"2024-01-18"}