{"id":"https://openalex.org/W2577066362","doi":"https://doi.org/10.1109/mass.2016.012","title":"Mobile Traffic Data Decomposition for Understanding Human Urban Activities","display_name":"Mobile Traffic Data Decomposition for Understanding Human Urban Activities","publication_year":2016,"publication_date":"2016-10-01","ids":{"openalex":"https://openalex.org/W2577066362","doi":"https://doi.org/10.1109/mass.2016.012","mag":"2577066362"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/mass.2016.012","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5100432811","display_name":"Mingyang Zhang","orcid":"https://orcid.org/0000-0002-0800-0174"},"institutions":[{"id":"https://openalex.org/I99065089","display_name":"Tsinghua University","ror":"https://ror.org/03cve4549","country_code":"CN","type":"funder","lineage":["https://openalex.org/I99065089"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Mingyang Zhang","raw_affiliation_strings":["Department of Electronic Engineering, Tsinghua University, Beijing, China"],"affiliations":[{"raw_affiliation_string":"Department of Electronic Engineering, Tsinghua University, Beijing, China","institution_ids":["https://openalex.org/I99065089"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5062365263","display_name":"Fengli Xu","orcid":"https://orcid.org/0000-0002-5720-4026"},"institutions":[{"id":"https://openalex.org/I99065089","display_name":"Tsinghua University","ror":"https://ror.org/03cve4549","country_code":"CN","type":"funder","lineage":["https://openalex.org/I99065089"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Fengli Xu","raw_affiliation_strings":["Department of Electronic Engineering, Tsinghua University, Beijing, China"],"affiliations":[{"raw_affiliation_string":"Department of Electronic Engineering, Tsinghua University, Beijing, China","institution_ids":["https://openalex.org/I99065089"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5100355277","display_name":"Yong Li","orcid":"https://orcid.org/0000-0001-5617-1659"},"institutions":[{"id":"https://openalex.org/I99065089","display_name":"Tsinghua University","ror":"https://ror.org/03cve4549","country_code":"CN","type":"funder","lineage":["https://openalex.org/I99065089"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Yong Li","raw_affiliation_strings":["Department of Electronic Engineering, Tsinghua University, Beijing, China"],"affiliations":[{"raw_affiliation_string":"Department of Electronic Engineering, Tsinghua University, Beijing, China","institution_ids":["https://openalex.org/I99065089"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.672,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":5,"citation_normalized_percentile":{"value":0.585714,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":81,"max":82},"biblio":{"volume":null,"issue":null,"first_page":"1","last_page":"9"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11980","display_name":"Human Mobility and Location-Based Analysis","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/3313","display_name":"Transportation"},"field":{"id":"https://openalex.org/fields/33","display_name":"Social Sciences"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}},"topics":[{"id":"https://openalex.org/T11980","display_name":"Human Mobility and Location-Based Analysis","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/3313","display_name":"Transportation"},"field":{"id":"https://openalex.org/fields/33","display_name":"Social Sciences"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}},{"id":"https://openalex.org/T11344","display_name":"Traffic Prediction and Management Techniques","score":0.9869,"subfield":{"id":"https://openalex.org/subfields/2215","display_name":"Building and Construction"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12205","display_name":"Time Series Analysis and Forecasting","score":0.9839,"subfield":{"id":"https://openalex.org/subfields/1711","display_name":"Signal Processing"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/airfield-traffic-pattern","display_name":"Airfield traffic pattern","score":0.5137249},{"id":"https://openalex.org/keywords/consumption","display_name":"Consumption","score":0.45799074}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.68626326},{"id":"https://openalex.org/C165696696","wikidata":"https://www.wikidata.org/wiki/Q11287","display_name":"Exploit","level":2,"score":0.5941022},{"id":"https://openalex.org/C12713177","wikidata":"https://www.wikidata.org/wiki/Q1900281","display_name":"Perspective (graphical)","level":2,"score":0.5507171},{"id":"https://openalex.org/C2778755073","wikidata":"https://www.wikidata.org/wiki/Q10858537","display_name":"Scale (ratio)","level":2,"score":0.54174507},{"id":"https://openalex.org/C204673680","wikidata":"https://www.wikidata.org/wiki/Q1628107","display_name":"Airfield traffic pattern","level":2,"score":0.5137249},{"id":"https://openalex.org/C30772137","wikidata":"https://www.wikidata.org/wiki/Q5164762","display_name":"Consumption (sociology)","level":2,"score":0.45799074},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.2327089},{"id":"https://openalex.org/C205649164","wikidata":"https://www.wikidata.org/wiki/Q1071","display_name":"Geography","level":0,"score":0.2216332},{"id":"https://openalex.org/C31258907","wikidata":"https://www.wikidata.org/wiki/Q1301371","display_name":"Computer network","level":1,"score":0.13569969},{"id":"https://openalex.org/C38652104","wikidata":"https://www.wikidata.org/wiki/Q3510521","display_name":"Computer security","level":1,"score":0.119962215},{"id":"https://openalex.org/C58640448","wikidata":"https://www.wikidata.org/wiki/Q42515","display_name":"Cartography","level":1,"score":0.089149624},{"id":"https://openalex.org/C36289849","wikidata":"https://www.wikidata.org/wiki/Q34749","display_name":"Social science","level":1,"score":0.0},{"id":"https://openalex.org/C144024400","wikidata":"https://www.wikidata.org/wiki/Q21201","display_name":"Sociology","level":0,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/mass.2016.012","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"display_name":"Sustainable cities and communities","id":"https://metadata.un.org/sdg/11","score":0.85}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":19,"referenced_works":["https://openalex.org/W1537940195","https://openalex.org/W1972631516","https://openalex.org/W1982300822","https://openalex.org/W1985161079","https://openalex.org/W1987228002","https://openalex.org/W1991046885","https://openalex.org/W2009654461","https://openalex.org/W2034767282","https://openalex.org/W2037963943","https://openalex.org/W2065130322","https://openalex.org/W2097225206","https://openalex.org/W2108323654","https://openalex.org/W2142074516","https://openalex.org/W2153803020","https://openalex.org/W2161870839","https://openalex.org/W2166692930","https://openalex.org/W2791196439","https://openalex.org/W2798056406","https://openalex.org/W3098098882"],"related_works":["https://openalex.org/W4312814274","https://openalex.org/W4285370786","https://openalex.org/W3207760230","https://openalex.org/W2536018345","https://openalex.org/W2358353312","https://openalex.org/W2353836703","https://openalex.org/W2296488620","https://openalex.org/W17155033","https://openalex.org/W1590307681","https://openalex.org/W1496222301"],"abstract_inverted_index":{"The":[0],"goal":[1],"of":[2,10,35,40,50,55,74,80,89,139,146,196],"this":[3,173],"paper":[4],"is":[5,31],"to":[6,118,175,192],"understand":[7],"the":[8,16,26,38,48,90,108,136,158,202],"patterns":[9,24,85,116,131],"mobile":[11,22,41,81,140,168,198],"traffic":[12,23,42,60,82,141,169,199],"consumption":[13,43,200],"and":[14,21,53,67,93,171,182],"reveal":[15],"correlations":[17],"between":[18],"human":[19,120,147],"activities":[20,148,166],"in":[25,33,44,201],"urban":[27,46,59,203],"environment.":[28],"This":[29],"task":[30],"nontrivial":[32],"terms":[34],"three":[36,75,102],"challenges:":[37],"complexity":[39],"large":[45],"scale,":[47],"disturbance":[49],"abnormal":[51],"events,":[52],"lack":[54],"prior":[56],"knowledge":[57,174],"about":[58],"patterns.":[61,123],"We":[62,185],"propose":[63],"a":[64,69,150,193],"novel":[65],"approach":[66],"design":[68],"powerful":[70],"system":[71],"that":[72,128],"consists":[73],"parts:":[76],"time":[77],"series":[78],"decomposing":[79],"data,":[83],"extracting":[84],"from":[86,97,135,149],"different":[87,119,151],"components":[88],"original":[91],"traffic,":[92],"detecting":[94],"anomalous":[95],"events":[96,179],"noises.":[98],"Our":[99],"investigation":[100],"reveals":[101],"important":[103],"observations.":[104],"Firstly,":[105],"among":[106],"all":[107],"6,400":[109],"cellular":[110],"towers":[111],"we":[112,125,161],"identify":[113],"five":[114],"daily":[115,121],"corresponding":[117],"activity":[122],"Secondly,":[124],"find":[126],"out":[127],"two":[129],"natural":[130],"can":[132],"be":[133],"extracted":[134],"weekly":[137],"trend":[138],"consumption,":[142,170],"which":[143],"reflects":[144],"modes":[145],"perspective.":[152],"Last":[153],"but":[154],"not":[155],"least,":[156],"besides":[157],"regular":[159],"patterns,":[160],"investigate":[162],"how":[163],"do":[164],"irregular":[165],"affect":[167],"exploit":[172],"successfully":[176],"detect":[177],"unusual":[178],"like":[180],"concerts":[181],"soccer":[183],"matches.":[184],"believe":[186],"our":[187],"proposed":[188],"methodology":[189],"will":[190],"lead":[191],"comprehensive":[194],"understanding":[195],"large-scale":[197],"areas.":[204]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2577066362","counts_by_year":[{"year":2020,"cited_by_count":2},{"year":2019,"cited_by_count":1},{"year":2018,"cited_by_count":2}],"updated_date":"2025-03-20T10:47:34.588431","created_date":"2017-01-26"}