{"id":"https://openalex.org/W4391164319","doi":"https://doi.org/10.1109/lsp.2024.3358100","title":"R-LKDepth: Recurrent Depth Learning With Larger Kernel","display_name":"R-LKDepth: Recurrent Depth Learning With Larger Kernel","publication_year":2024,"publication_date":"2024-01-01","ids":{"openalex":"https://openalex.org/W4391164319","doi":"https://doi.org/10.1109/lsp.2024.3358100"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/lsp.2024.3358100","pdf_url":null,"source":{"id":"https://openalex.org/S120629676","display_name":"IEEE Signal Processing Letters","issn_l":"1070-9908","issn":["1070-9908","1558-2361"],"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310319808","host_organization_name":"Institute of Electrical and Electronics Engineers","host_organization_lineage":["https://openalex.org/P4310319808"],"host_organization_lineage_names":["Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"journal-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5081338992","display_name":"Zhongkai Zhou","orcid":"https://orcid.org/0000-0003-2772-3877"},"institutions":[{"id":"https://openalex.org/I163340411","display_name":"Hohai University","ror":"https://ror.org/01wd4xt90","country_code":"CN","type":"funder","lineage":["https://openalex.org/I163340411"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Zhongkai Zhou","raw_affiliation_strings":["College of Internet of Things Engineering, Hohai University - Changzhou Campus, Changzhou, China"],"affiliations":[{"raw_affiliation_string":"College of Internet of Things Engineering, Hohai University - Changzhou Campus, Changzhou, China","institution_ids":["https://openalex.org/I163340411"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5101942264","display_name":"Xinnan Fan","orcid":"https://orcid.org/0000-0002-9114-5699"},"institutions":[{"id":"https://openalex.org/I163340411","display_name":"Hohai University","ror":"https://ror.org/01wd4xt90","country_code":"CN","type":"funder","lineage":["https://openalex.org/I163340411"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Xinnan Fan","raw_affiliation_strings":["College of Internet of Things Engineering, Hohai University - Changzhou Campus, Changzhou, China"],"affiliations":[{"raw_affiliation_string":"College of Internet of Things Engineering, Hohai University - Changzhou Campus, Changzhou, China","institution_ids":["https://openalex.org/I163340411"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5049695253","display_name":"Pengfei Shi","orcid":"https://orcid.org/0000-0002-4467-7641"},"institutions":[{"id":"https://openalex.org/I163340411","display_name":"Hohai University","ror":"https://ror.org/01wd4xt90","country_code":"CN","type":"funder","lineage":["https://openalex.org/I163340411"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Pengfei Shi","raw_affiliation_strings":["College of Internet of Things Engineering, Hohai University - Changzhou Campus, Changzhou, China"],"affiliations":[{"raw_affiliation_string":"College of Internet of Things Engineering, Hohai University - Changzhou Campus, Changzhou, China","institution_ids":["https://openalex.org/I163340411"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5013211531","display_name":"Yuanxue Xin","orcid":"https://orcid.org/0000-0001-8710-511X"},"institutions":[{"id":"https://openalex.org/I163340411","display_name":"Hohai University","ror":"https://ror.org/01wd4xt90","country_code":"CN","type":"funder","lineage":["https://openalex.org/I163340411"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Yuanxue Xin","raw_affiliation_strings":["College of Internet of Things Engineering, Hohai University - Changzhou Campus, Changzhou, China"],"affiliations":[{"raw_affiliation_string":"College of Internet of Things Engineering, Hohai University - Changzhou Campus, Changzhou, China","institution_ids":["https://openalex.org/I163340411"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5100395727","display_name":"Xiaotian Wang","orcid":"https://orcid.org/0000-0002-6970-2997"},"institutions":[{"id":"https://openalex.org/I163340411","display_name":"Hohai University","ror":"https://ror.org/01wd4xt90","country_code":"CN","type":"funder","lineage":["https://openalex.org/I163340411"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Xiaotian Wang","raw_affiliation_strings":["College of Internet of Things Engineering, Hohai University - Changzhou Campus, Changzhou, China"],"affiliations":[{"raw_affiliation_string":"College of Internet of Things Engineering, Hohai University - Changzhou Campus, Changzhou, China","institution_ids":["https://openalex.org/I163340411"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.0,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":77},"biblio":{"volume":"31","issue":null,"first_page":"601","last_page":"605"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10531","display_name":"Advanced Vision and Imaging","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10531","display_name":"Advanced Vision and Imaging","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T13114","display_name":"Image Processing Techniques and Applications","score":0.999,"subfield":{"id":"https://openalex.org/subfields/2214","display_name":"Media Technology"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10638","display_name":"Optical measurement and interference techniques","score":0.9969,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/monocular","display_name":"Monocular","score":0.67972887},{"id":"https://openalex.org/keywords/kernel","display_name":"Kernel (algebra)","score":0.65796906},{"id":"https://openalex.org/keywords/benchmark","display_name":"Benchmark (surveying)","score":0.5544886},{"id":"https://openalex.org/keywords/backbone-network","display_name":"Backbone network","score":0.5004976}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.76380205},{"id":"https://openalex.org/C65909025","wikidata":"https://www.wikidata.org/wiki/Q1945033","display_name":"Monocular","level":2,"score":0.67972887},{"id":"https://openalex.org/C74193536","wikidata":"https://www.wikidata.org/wiki/Q574844","display_name":"Kernel (algebra)","level":2,"score":0.65796906},{"id":"https://openalex.org/C2779960059","wikidata":"https://www.wikidata.org/wiki/Q7113681","display_name":"Overhead (engineering)","level":2,"score":0.6023243},{"id":"https://openalex.org/C177148314","wikidata":"https://www.wikidata.org/wiki/Q170084","display_name":"Generalization","level":2,"score":0.58792555},{"id":"https://openalex.org/C185798385","wikidata":"https://www.wikidata.org/wiki/Q1161707","display_name":"Benchmark (surveying)","level":2,"score":0.5544886},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.5515497},{"id":"https://openalex.org/C88796919","wikidata":"https://www.wikidata.org/wiki/Q1142907","display_name":"Backbone network","level":2,"score":0.5004976},{"id":"https://openalex.org/C2780451532","wikidata":"https://www.wikidata.org/wiki/Q759676","display_name":"Task (project management)","level":2,"score":0.46301553},{"id":"https://openalex.org/C77618280","wikidata":"https://www.wikidata.org/wiki/Q1155772","display_name":"Scheme (mathematics)","level":2,"score":0.44240806},{"id":"https://openalex.org/C9652623","wikidata":"https://www.wikidata.org/wiki/Q190109","display_name":"Field (mathematics)","level":2,"score":0.43563843},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.41756278},{"id":"https://openalex.org/C2778755073","wikidata":"https://www.wikidata.org/wiki/Q10858537","display_name":"Scale (ratio)","level":2,"score":0.4165449},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.38021767},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.14180693},{"id":"https://openalex.org/C134306372","wikidata":"https://www.wikidata.org/wiki/Q7754","display_name":"Mathematical analysis","level":1,"score":0.0},{"id":"https://openalex.org/C31258907","wikidata":"https://www.wikidata.org/wiki/Q1301371","display_name":"Computer network","level":1,"score":0.0},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C187736073","wikidata":"https://www.wikidata.org/wiki/Q2920921","display_name":"Management","level":1,"score":0.0},{"id":"https://openalex.org/C13280743","wikidata":"https://www.wikidata.org/wiki/Q131089","display_name":"Geodesy","level":1,"score":0.0},{"id":"https://openalex.org/C114614502","wikidata":"https://www.wikidata.org/wiki/Q76592","display_name":"Combinatorics","level":1,"score":0.0},{"id":"https://openalex.org/C62520636","wikidata":"https://www.wikidata.org/wiki/Q944","display_name":"Quantum mechanics","level":1,"score":0.0},{"id":"https://openalex.org/C202444582","wikidata":"https://www.wikidata.org/wiki/Q837863","display_name":"Pure mathematics","level":1,"score":0.0},{"id":"https://openalex.org/C162324750","wikidata":"https://www.wikidata.org/wiki/Q8134","display_name":"Economics","level":0,"score":0.0},{"id":"https://openalex.org/C205649164","wikidata":"https://www.wikidata.org/wiki/Q1071","display_name":"Geography","level":0,"score":0.0},{"id":"https://openalex.org/C111919701","wikidata":"https://www.wikidata.org/wiki/Q9135","display_name":"Operating system","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/lsp.2024.3358100","pdf_url":null,"source":{"id":"https://openalex.org/S120629676","display_name":"IEEE Signal Processing Letters","issn_l":"1070-9908","issn":["1070-9908","1558-2361"],"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310319808","host_organization_name":"Institute of Electrical and Electronics Engineers","host_organization_lineage":["https://openalex.org/P4310319808"],"host_organization_lineage_names":["Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"score":0.44,"id":"https://metadata.un.org/sdg/9","display_name":"Industry, innovation and infrastructure"}],"grants":[{"funder":"https://openalex.org/F4320322769","funder_display_name":"Natural Science Foundation of Jiangsu Province","award_id":"BK20231186"},{"funder":"https://openalex.org/F4320335787","funder_display_name":"Fundamental Research Funds for the Central Universities","award_id":"B220203032"}],"datasets":[],"versions":[],"referenced_works_count":39,"referenced_works":["https://openalex.org/W1905829557","https://openalex.org/W2108598243","https://openalex.org/W2115579991","https://openalex.org/W2117539524","https://openalex.org/W2340897893","https://openalex.org/W2520707372","https://openalex.org/W2776033207","https://openalex.org/W2963652981","https://openalex.org/W2964199361","https://openalex.org/W2985775862","https://openalex.org/W3107389224","https://openalex.org/W3109908659","https://openalex.org/W3139067130","https://openalex.org/W3168292752","https://openalex.org/W3175682855","https://openalex.org/W3204559841","https://openalex.org/W4210364886","https://openalex.org/W4225576932","https://openalex.org/W4226334005","https://openalex.org/W4283319498","https://openalex.org/W4285061034","https://openalex.org/W4297845938","https://openalex.org/W4312311707","https://openalex.org/W4312398233","https://openalex.org/W4312604822","https://openalex.org/W4312740558","https://openalex.org/W4312801317","https://openalex.org/W4313013238","https://openalex.org/W4313185116","https://openalex.org/W4319299874","https://openalex.org/W4320002662","https://openalex.org/W4386066469","https://openalex.org/W4386076206","https://openalex.org/W4386076707","https://openalex.org/W4387968507","https://openalex.org/W4390872059","https://openalex.org/W4390872248","https://openalex.org/W4390873354","https://openalex.org/W4393178517"],"related_works":["https://openalex.org/W43109613","https://openalex.org/W4308659218","https://openalex.org/W3162204513","https://openalex.org/W2522537526","https://openalex.org/W2371138613","https://openalex.org/W2359952343","https://openalex.org/W2239445980","https://openalex.org/W2080152487","https://openalex.org/W2048963458","https://openalex.org/W200819717"],"abstract_inverted_index":{"Monocular":[0],"depth":[1,18,156],"estimation":[2,19,157],"is":[3,70],"a":[4,21,40,116,132],"critical":[5],"task":[6],"with":[7,115,125,172],"significant":[8],"potential":[9],"for":[10,16,145],"real-time":[11],"applications.":[12],"However,":[13],"current":[14],"networks":[15,31,59],"monocular":[17],"exhibit":[20],"trade-off":[22],"between":[23],"computational":[24],"overhead":[25],"and":[26,37,87,99,162,165],"accuracy.":[27],"Current":[28],"topperforming":[29],"coarse-to-fine":[30],"excel":[32],"in":[33],"building":[34],"multi-scale":[35,134,143],"features":[36,124],"thus":[38,100],"get":[39],"satisfactory":[41],"result,":[42],"but":[43,67],"suffer":[44],"from":[45],"an":[46,102],"excessive":[47],"count":[48],"of":[49,52,64],"model":[50,65],"parameters":[51],"its":[53],"deeper":[54],"backbone.":[55],"In":[56,90],"contrast,":[57],"recurrent":[58,104,146],"significantly":[60,153],"save":[61],"the":[62,74,97,111,122,155],"use":[63],"parameters,":[66],"their":[68],"performance":[69,158,168],"often":[71],"restricted":[72],"by":[73],"smaller":[75],"receptive":[76,127],"field,":[77],"leading":[78],"to":[79,83,95,119],"insufficient":[80],"local":[81],"evidence":[82],"handle":[84],"complex":[85,160],"objects":[86,161],"homogeneous":[88,163],"regions.":[89],"this":[91],"paper,":[92],"we":[93,108,130],"aim":[94],"alleviate":[96],"limitation":[98],"propose":[101,131],"efficient":[103],"network":[105],"R-LKDepth.":[106],"Specifically,":[107],"first":[109],"introduce":[110],"larger":[112,126],"kernel":[113],"scheme":[114],"careful":[117],"design":[118],"effectively":[120],"extract":[121],"image":[123],"fields.":[128],"Furthermore,":[129],"group-wise":[133],"self-attention":[135],"based":[136],"refine-feed":[137],"(GMSA-RF)":[138],"module,":[139],"which":[140],"efficiently":[141],"aggregates":[142],"information":[144],"refinement":[147],"procedure.":[148],"The":[149],"resulting":[150],"network,":[151],"R-LKDepth,":[152],"improves":[154],"over":[159],"regions":[164],"achieves":[166],"state-of-the-art":[167],"on":[169],"standard":[170],"benchmarks":[171],"superior":[173],"cross-dataset":[174],"generalization":[175],"capability.":[176]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4391164319","counts_by_year":[],"updated_date":"2025-04-15T11:36:09.866600","created_date":"2024-01-25"}