{"id":"https://openalex.org/W4387129608","doi":"https://doi.org/10.1109/lsp.2023.3320439","title":"Learning Latent ODEs With Graph RNN for Multi-Channel Time Series Forecasting","display_name":"Learning Latent ODEs With Graph RNN for Multi-Channel Time Series Forecasting","publication_year":2023,"publication_date":"2023-01-01","ids":{"openalex":"https://openalex.org/W4387129608","doi":"https://doi.org/10.1109/lsp.2023.3320439"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/lsp.2023.3320439","pdf_url":null,"source":{"id":"https://openalex.org/S120629676","display_name":"IEEE Signal Processing Letters","issn_l":"1070-9908","issn":["1070-9908","1558-2361"],"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310319808","host_organization_name":"Institute of Electrical and Electronics Engineers","host_organization_lineage":["https://openalex.org/P4310319808"],"host_organization_lineage_names":["Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"journal-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5102023057","display_name":"Fei Zhan","orcid":"https://orcid.org/0009-0006-5337-1667"},"institutions":[{"id":"https://openalex.org/I19820366","display_name":"Chinese Academy of Sciences","ror":"https://ror.org/034t30j35","country_code":"CN","type":"government","lineage":["https://openalex.org/I19820366"]},{"id":"https://openalex.org/I142078773","display_name":"Shenyang Institute of Automation","ror":"https://ror.org/00ft6nj33","country_code":"CN","type":"funder","lineage":["https://openalex.org/I142078773","https://openalex.org/I19820366"]},{"id":"https://openalex.org/I4210165038","display_name":"University of Chinese Academy of Sciences","ror":"https://ror.org/05qbk4x57","country_code":"CN","type":"funder","lineage":["https://openalex.org/I19820366","https://openalex.org/I4210165038"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Fei Zhan","raw_affiliation_strings":["Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang, China","Key Laboratory of Networked Control System, Shenyang, China","Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, China","University of Chinese Academy of Sciences, Beijing, China"],"affiliations":[{"raw_affiliation_string":"Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang, China","institution_ids":["https://openalex.org/I19820366","https://openalex.org/I142078773"]},{"raw_affiliation_string":"Key Laboratory of Networked Control System, Shenyang, China","institution_ids":[]},{"raw_affiliation_string":"Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, China","institution_ids":["https://openalex.org/I142078773","https://openalex.org/I19820366"]},{"raw_affiliation_string":"University of Chinese Academy of Sciences, Beijing, China","institution_ids":["https://openalex.org/I4210165038"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5023696818","display_name":"Xiaofeng Zhou","orcid":"https://orcid.org/0000-0001-9837-1261"},"institutions":[{"id":"https://openalex.org/I142078773","display_name":"Shenyang Institute of Automation","ror":"https://ror.org/00ft6nj33","country_code":"CN","type":"funder","lineage":["https://openalex.org/I142078773","https://openalex.org/I19820366"]},{"id":"https://openalex.org/I19820366","display_name":"Chinese Academy of Sciences","ror":"https://ror.org/034t30j35","country_code":"CN","type":"government","lineage":["https://openalex.org/I19820366"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Xiaofeng Zhou","raw_affiliation_strings":["Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang, China","Key Laboratory of Networked Control System, Shenyang, China","Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, China"],"affiliations":[{"raw_affiliation_string":"Key Laboratory of Networked Control System, Shenyang, China","institution_ids":[]},{"raw_affiliation_string":"Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, China","institution_ids":["https://openalex.org/I142078773","https://openalex.org/I19820366"]},{"raw_affiliation_string":"Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang, China","institution_ids":["https://openalex.org/I142078773","https://openalex.org/I19820366"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100424102","display_name":"Shuai Li","orcid":"https://orcid.org/0000-0002-7375-3551"},"institutions":[{"id":"https://openalex.org/I142078773","display_name":"Shenyang Institute of Automation","ror":"https://ror.org/00ft6nj33","country_code":"CN","type":"funder","lineage":["https://openalex.org/I142078773","https://openalex.org/I19820366"]},{"id":"https://openalex.org/I19820366","display_name":"Chinese Academy of Sciences","ror":"https://ror.org/034t30j35","country_code":"CN","type":"government","lineage":["https://openalex.org/I19820366"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Shuai Li","raw_affiliation_strings":["Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang, China","Key Laboratory of Networked Control System, Shenyang, China","Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, China"],"affiliations":[{"raw_affiliation_string":"Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang, China","institution_ids":["https://openalex.org/I142078773","https://openalex.org/I19820366"]},{"raw_affiliation_string":"Key Laboratory of Networked Control System, Shenyang, China","institution_ids":[]},{"raw_affiliation_string":"Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, China","institution_ids":["https://openalex.org/I142078773","https://openalex.org/I19820366"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5102983830","display_name":"Dongni Jia","orcid":"https://orcid.org/0009-0000-2034-9195"},"institutions":[{"id":"https://openalex.org/I142078773","display_name":"Shenyang Institute of Automation","ror":"https://ror.org/00ft6nj33","country_code":"CN","type":"funder","lineage":["https://openalex.org/I142078773","https://openalex.org/I19820366"]},{"id":"https://openalex.org/I19820366","display_name":"Chinese Academy of Sciences","ror":"https://ror.org/034t30j35","country_code":"CN","type":"government","lineage":["https://openalex.org/I19820366"]},{"id":"https://openalex.org/I4210165038","display_name":"University of Chinese Academy of Sciences","ror":"https://ror.org/05qbk4x57","country_code":"CN","type":"funder","lineage":["https://openalex.org/I19820366","https://openalex.org/I4210165038"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Dongni Jia","raw_affiliation_strings":["Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang, China","Key Laboratory of Networked Control System, Shenyang, China","Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, China","University of Chinese Academy of Sciences, Beijing, China"],"affiliations":[{"raw_affiliation_string":"Key Laboratory of Networked Control System, Shenyang, China","institution_ids":[]},{"raw_affiliation_string":"Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, China","institution_ids":["https://openalex.org/I142078773","https://openalex.org/I19820366"]},{"raw_affiliation_string":"Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang, China","institution_ids":["https://openalex.org/I142078773","https://openalex.org/I19820366"]},{"raw_affiliation_string":"University of Chinese Academy of Sciences, Beijing, China","institution_ids":["https://openalex.org/I4210165038"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5100769861","display_name":"Hong Song","orcid":"https://orcid.org/0009-0002-2638-3196"},"institutions":[{"id":"https://openalex.org/I142078773","display_name":"Shenyang Institute of Automation","ror":"https://ror.org/00ft6nj33","country_code":"CN","type":"funder","lineage":["https://openalex.org/I142078773","https://openalex.org/I19820366"]},{"id":"https://openalex.org/I19820366","display_name":"Chinese Academy of Sciences","ror":"https://ror.org/034t30j35","country_code":"CN","type":"government","lineage":["https://openalex.org/I19820366"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Hong Song","raw_affiliation_strings":["Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang, China","Key Laboratory of Networked Control System, Shenyang, China","Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, China"],"affiliations":[{"raw_affiliation_string":"Key Laboratory of Networked Control System, Shenyang, China","institution_ids":[]},{"raw_affiliation_string":"Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, China","institution_ids":["https://openalex.org/I142078773","https://openalex.org/I19820366"]},{"raw_affiliation_string":"Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang, China","institution_ids":["https://openalex.org/I142078773","https://openalex.org/I19820366"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":3,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.514,"has_fulltext":false,"cited_by_count":2,"citation_normalized_percentile":{"value":0.467414,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":76,"max":82},"biblio":{"volume":"30","issue":null,"first_page":"1432","last_page":"1436"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11344","display_name":"Traffic Prediction and Management Techniques","score":0.9995,"subfield":{"id":"https://openalex.org/subfields/2215","display_name":"Building and Construction"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11344","display_name":"Traffic Prediction and Management Techniques","score":0.9995,"subfield":{"id":"https://openalex.org/subfields/2215","display_name":"Building and Construction"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12205","display_name":"Time Series Analysis and Forecasting","score":0.9971,"subfield":{"id":"https://openalex.org/subfields/1711","display_name":"Signal Processing"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11052","display_name":"Energy Load and Power Forecasting","score":0.9961,"subfield":{"id":"https://openalex.org/subfields/2208","display_name":"Electrical and Electronic Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/ode","display_name":"Ode","score":0.7090437},{"id":"https://openalex.org/keywords/temporal-database","display_name":"Temporal database","score":0.43970248},{"id":"https://openalex.org/keywords/feature-learning","display_name":"Feature Learning","score":0.41771656}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.75425994},{"id":"https://openalex.org/C34862557","wikidata":"https://www.wikidata.org/wiki/Q178985","display_name":"Ode","level":2,"score":0.7090437},{"id":"https://openalex.org/C147168706","wikidata":"https://www.wikidata.org/wiki/Q1457734","display_name":"Recurrent neural network","level":3,"score":0.700853},{"id":"https://openalex.org/C132525143","wikidata":"https://www.wikidata.org/wiki/Q141488","display_name":"Graph","level":2,"score":0.6126906},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.5375397},{"id":"https://openalex.org/C151406439","wikidata":"https://www.wikidata.org/wiki/Q186588","display_name":"Time series","level":2,"score":0.51737636},{"id":"https://openalex.org/C51544822","wikidata":"https://www.wikidata.org/wiki/Q465274","display_name":"Ordinary differential equation","level":3,"score":0.46126515},{"id":"https://openalex.org/C81363708","wikidata":"https://www.wikidata.org/wiki/Q17084460","display_name":"Convolutional neural network","level":2,"score":0.45561963},{"id":"https://openalex.org/C77277458","wikidata":"https://www.wikidata.org/wiki/Q1969246","display_name":"Temporal database","level":2,"score":0.43970248},{"id":"https://openalex.org/C80444323","wikidata":"https://www.wikidata.org/wiki/Q2878974","display_name":"Theoretical computer science","level":1,"score":0.42897332},{"id":"https://openalex.org/C59404180","wikidata":"https://www.wikidata.org/wiki/Q17013334","display_name":"Feature learning","level":2,"score":0.41771656},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.41151845},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.39937097},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.3634538},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.34848556},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.33717307},{"id":"https://openalex.org/C78045399","wikidata":"https://www.wikidata.org/wiki/Q11214","display_name":"Differential equation","level":2,"score":0.2302489},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.13533607},{"id":"https://openalex.org/C28826006","wikidata":"https://www.wikidata.org/wiki/Q33521","display_name":"Applied mathematics","level":1,"score":0.0},{"id":"https://openalex.org/C134306372","wikidata":"https://www.wikidata.org/wiki/Q7754","display_name":"Mathematical analysis","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/lsp.2023.3320439","pdf_url":null,"source":{"id":"https://openalex.org/S120629676","display_name":"IEEE Signal Processing Letters","issn_l":"1070-9908","issn":["1070-9908","1558-2361"],"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310319808","host_organization_name":"Institute of Electrical and Electronics Engineers","host_organization_lineage":["https://openalex.org/P4310319808"],"host_organization_lineage_names":["Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[{"funder":"https://openalex.org/F4320321133","funder_display_name":"Chinese Academy of Sciences","award_id":"2022000346"}],"datasets":[],"versions":[],"referenced_works_count":30,"referenced_works":["https://openalex.org/W2016287239","https://openalex.org/W2369773105","https://openalex.org/W2510642588","https://openalex.org/W2572939427","https://openalex.org/W2945193464","https://openalex.org/W2963358464","https://openalex.org/W2963755523","https://openalex.org/W2964015378","https://openalex.org/W2964199361","https://openalex.org/W2971278153","https://openalex.org/W2986385482","https://openalex.org/W2989915885","https://openalex.org/W2997848713","https://openalex.org/W3015712039","https://openalex.org/W3038981236","https://openalex.org/W3080253043","https://openalex.org/W3095402273","https://openalex.org/W3100441442","https://openalex.org/W3129017148","https://openalex.org/W3148628637","https://openalex.org/W3152893301","https://openalex.org/W3170140111","https://openalex.org/W4213412721","https://openalex.org/W4223967157","https://openalex.org/W4233713109","https://openalex.org/W4285820068","https://openalex.org/W4287758540","https://openalex.org/W4309951073","https://openalex.org/W4313201684","https://openalex.org/W4367595602"],"related_works":["https://openalex.org/W4382202915","https://openalex.org/W4295745414","https://openalex.org/W3095242670","https://openalex.org/W3082668976","https://openalex.org/W3033597970","https://openalex.org/W2618518959","https://openalex.org/W2517973022","https://openalex.org/W2231364979","https://openalex.org/W1580703421","https://openalex.org/W1543121148"],"abstract_inverted_index":{"Forecasting":[0],"tasks":[1],"involving":[2],"multi-channel":[3,22],"time":[4,23,70,128],"series":[5,24,71],"data":[6],"pervade":[7],"numerous":[8],"practical":[9],"applications":[10],"and":[11,38,111],"have":[12,26],"attracted":[13],"significant":[14],"attention.":[15],"Spatio-temporal":[16],"graph":[17,48,113],"neural":[18,53,61,106,139],"network":[19],"models":[20],"for":[21],"forecasting":[25],"recently":[27],"gained":[28],"traction,":[29],"owing":[30],"to":[31,77,116],"their":[32],"ability":[33,76],"in":[34,81,121,130],"capturing":[35],"both":[36],"spatial":[37],"temporal":[39,67],"features.":[40],"A":[41],"common":[42],"practice":[43],"is":[44,173],"the":[45,56,66,74,82,118,126,148],"integration":[46],"of":[47,59,69,138,150],"convolutional":[49],"networks":[50,62,107],"with":[51,108,143],"recurrent":[52,60,105],"networks.":[54],"However,":[55],"discrete":[57],"intervals":[58],"pose":[63],"limitations":[64],"on":[65,163],"resolution":[68],"forecasting,":[72],"impeding":[73],"model's":[75],"capture":[78],"subtle":[79],"changes":[80],"data.":[83],"To":[84],"address":[85],"this":[86],"challenge,":[87],"we":[88,132,156],"introduce":[89],"a":[90,109,134],"continuous":[91,104],"spatio-temporal":[92,119],"framework,":[93],"termed":[94],"Graph":[95],"Ordinary":[96],"Differential":[97],"Equation":[98],"Recurrent":[99],"Network":[100],"(GODERN).":[101],"GODERN":[102,159],"incorporates":[103],"learnable":[110],"directed":[112],"convolution":[114],"layer":[115],"model":[117],"dynamics":[120],"latent":[122],"space.":[123],"Furthermore,":[124],"given":[125],"actual":[127],"representation":[129],"GODERN,":[131],"propose":[133],"novel":[135],"augmented":[136],"method":[137],"ordinary":[140],"differential":[141],"equation":[142],"fast-slow":[144],"dynamics,":[145],"thus":[146],"allowing":[147],"encapsulation":[149],"multi-scale":[151],"information.":[152],"Through":[153],"our":[154],"experiments,":[155],"demonstrate":[157],"that":[158],"achieves":[160],"superior":[161],"accuracy":[162],"four":[164],"real-life":[165],"datasets,":[166],"outperforming":[167],"13":[168],"baseline":[169],"models.":[170],"The":[171],"code":[172],"available":[174],"at":[175],"https://github.com/Fei-u/GODERN":[178],".":[179]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4387129608","counts_by_year":[{"year":2024,"cited_by_count":2}],"updated_date":"2025-04-06T07:28:04.933613","created_date":"2023-09-29"}