{"id":"https://openalex.org/W2978977033","doi":"https://doi.org/10.1109/lsp.2019.2945115","title":"Deep Convolution Network for Direction of Arrival Estimation With Sparse Prior","display_name":"Deep Convolution Network for Direction of Arrival Estimation With Sparse Prior","publication_year":2019,"publication_date":"2019-10-02","ids":{"openalex":"https://openalex.org/W2978977033","doi":"https://doi.org/10.1109/lsp.2019.2945115","mag":"2978977033"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/lsp.2019.2945115","pdf_url":null,"source":{"id":"https://openalex.org/S120629676","display_name":"IEEE Signal Processing Letters","issn_l":"1070-9908","issn":["1070-9908","1558-2361"],"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310319808","host_organization_name":"Institute of Electrical and Electronics Engineers","host_organization_lineage":["https://openalex.org/P4310319808"],"host_organization_lineage_names":["Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"journal-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5056645000","display_name":"Liuli Wu","orcid":"https://orcid.org/0000-0002-4725-2315"},"institutions":[{"id":"https://openalex.org/I170215575","display_name":"National University of Defense Technology","ror":"https://ror.org/05d2yfz11","country_code":"CN","type":"funder","lineage":["https://openalex.org/I170215575"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Liuli Wu","raw_affiliation_strings":["State Key Laboratory of Complex Electromagnetic Environment Effects on Electronics and Information System, National University of Defense Technology, Changsha, China"],"affiliations":[{"raw_affiliation_string":"State Key Laboratory of Complex Electromagnetic Environment Effects on Electronics and Information System, National University of Defense Technology, Changsha, China","institution_ids":["https://openalex.org/I170215575"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5046860299","display_name":"Zhangmeng Liu","orcid":"https://orcid.org/0000-0001-9472-279X"},"institutions":[{"id":"https://openalex.org/I170215575","display_name":"National University of Defense Technology","ror":"https://ror.org/05d2yfz11","country_code":"CN","type":"funder","lineage":["https://openalex.org/I170215575"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Zhang-Meng Liu","raw_affiliation_strings":["State Key Laboratory of Complex Electromagnetic Environment Effects on Electronics and Information System, National University of Defense Technology, Changsha, China"],"affiliations":[{"raw_affiliation_string":"State Key Laboratory of Complex Electromagnetic Environment Effects on Electronics and Information System, National University of Defense Technology, Changsha, China","institution_ids":["https://openalex.org/I170215575"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5101706871","display_name":"Zhitao Huang","orcid":"https://orcid.org/0000-0001-7135-5181"},"institutions":[{"id":"https://openalex.org/I170215575","display_name":"National University of Defense Technology","ror":"https://ror.org/05d2yfz11","country_code":"CN","type":"funder","lineage":["https://openalex.org/I170215575"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Zhi-Tao Huang","raw_affiliation_strings":["State Key Laboratory of Complex Electromagnetic Environment Effects on Electronics and Information System, National University of Defense Technology, Changsha, China"],"affiliations":[{"raw_affiliation_string":"State Key Laboratory of Complex Electromagnetic Environment Effects on Electronics and Information System, National University of Defense Technology, Changsha, China","institution_ids":["https://openalex.org/I170215575"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":9.866,"has_fulltext":false,"cited_by_count":151,"citation_normalized_percentile":{"value":0.999787,"is_in_top_1_percent":true,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":99,"max":100},"biblio":{"volume":"26","issue":"11","first_page":"1688","last_page":"1692"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10931","display_name":"Direction-of-Arrival Estimation Techniques","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/1711","display_name":"Signal Processing"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10931","display_name":"Direction-of-Arrival Estimation Techniques","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/1711","display_name":"Signal Processing"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10860","display_name":"Speech and Audio Processing","score":0.9994,"subfield":{"id":"https://openalex.org/subfields/1711","display_name":"Signal Processing"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10326","display_name":"Indoor and Outdoor Localization Technologies","score":0.9976,"subfield":{"id":"https://openalex.org/subfields/2208","display_name":"Electrical and Electronic Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/convolution","display_name":"Convolution (computer science)","score":0.7441808},{"id":"https://openalex.org/keywords/direction-of-arrival","display_name":"Direction of arrival","score":0.67189896},{"id":"https://openalex.org/keywords/transformation-matrix","display_name":"Transformation matrix","score":0.49812126}],"concepts":[{"id":"https://openalex.org/C45347329","wikidata":"https://www.wikidata.org/wiki/Q5166604","display_name":"Convolution (computer science)","level":3,"score":0.7441808},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.7412475},{"id":"https://openalex.org/C172051844","wikidata":"https://www.wikidata.org/wiki/Q5280438","display_name":"Direction of arrival","level":3,"score":0.67189896},{"id":"https://openalex.org/C45374587","wikidata":"https://www.wikidata.org/wiki/Q12525525","display_name":"Computation","level":2,"score":0.6334532},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.62061507},{"id":"https://openalex.org/C204241405","wikidata":"https://www.wikidata.org/wiki/Q461499","display_name":"Transformation (genetics)","level":3,"score":0.6167201},{"id":"https://openalex.org/C108583219","wikidata":"https://www.wikidata.org/wiki/Q197536","display_name":"Deep learning","level":2,"score":0.5027027},{"id":"https://openalex.org/C165443888","wikidata":"https://www.wikidata.org/wiki/Q1482183","display_name":"Transformation matrix","level":3,"score":0.49812126},{"id":"https://openalex.org/C178650346","wikidata":"https://www.wikidata.org/wiki/Q201984","display_name":"Covariance","level":2,"score":0.44409645},{"id":"https://openalex.org/C185142706","wikidata":"https://www.wikidata.org/wiki/Q1134404","display_name":"Covariance matrix","level":2,"score":0.44081268},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.427766},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.40074113},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.23006505},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.19484523},{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.098243475},{"id":"https://openalex.org/C76155785","wikidata":"https://www.wikidata.org/wiki/Q418","display_name":"Telecommunications","level":1,"score":0.09282154},{"id":"https://openalex.org/C55493867","wikidata":"https://www.wikidata.org/wiki/Q7094","display_name":"Biochemistry","level":1,"score":0.0},{"id":"https://openalex.org/C185592680","wikidata":"https://www.wikidata.org/wiki/Q2329","display_name":"Chemistry","level":0,"score":0.0},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C39920418","wikidata":"https://www.wikidata.org/wiki/Q11476","display_name":"Kinematics","level":2,"score":0.0},{"id":"https://openalex.org/C74650414","wikidata":"https://www.wikidata.org/wiki/Q11397","display_name":"Classical mechanics","level":1,"score":0.0},{"id":"https://openalex.org/C21822782","wikidata":"https://www.wikidata.org/wiki/Q131214","display_name":"Antenna (radio)","level":2,"score":0.0},{"id":"https://openalex.org/C104317684","wikidata":"https://www.wikidata.org/wiki/Q7187","display_name":"Gene","level":2,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/lsp.2019.2945115","pdf_url":null,"source":{"id":"https://openalex.org/S120629676","display_name":"IEEE Signal Processing Letters","issn_l":"1070-9908","issn":["1070-9908","1558-2361"],"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310319808","host_organization_name":"Institute of Electrical and Electronics Engineers","host_organization_lineage":["https://openalex.org/P4310319808"],"host_organization_lineage_names":["Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[{"funder":"https://openalex.org/F4320322843","funder_display_name":"Natural Science Foundation of\u00a0Hunan Province","award_id":"2019JJ10004"}],"datasets":[],"versions":[],"referenced_works_count":20,"referenced_works":["https://openalex.org/W1522301498","https://openalex.org/W1603075283","https://openalex.org/W2016506370","https://openalex.org/W2035657168","https://openalex.org/W2100556411","https://openalex.org/W2103263585","https://openalex.org/W2104266700","https://openalex.org/W2110789499","https://openalex.org/W2156387975","https://openalex.org/W2162654459","https://openalex.org/W2297603755","https://openalex.org/W2586642235","https://openalex.org/W2611943505","https://openalex.org/W2810871807","https://openalex.org/W2890488649","https://openalex.org/W2897361856","https://openalex.org/W2915199461","https://openalex.org/W2963290405","https://openalex.org/W2964121744","https://openalex.org/W3104757150"],"related_works":["https://openalex.org/W4382204317","https://openalex.org/W2910677864","https://openalex.org/W2886934452","https://openalex.org/W2788344745","https://openalex.org/W2113817303","https://openalex.org/W2112938363","https://openalex.org/W2100915163","https://openalex.org/W2062336688","https://openalex.org/W2024369332","https://openalex.org/W1489099099"],"abstract_inverted_index":{"In":[0,55],"this":[1],"letter,":[2],"a":[3,39],"deep":[4,40,92],"learning":[5,93],"framework":[6,68],"for":[7],"direction":[8],"of":[9,21,34,81,102],"arrival":[10],"(DOA)":[11],"estimation":[12,87,109],"is":[13,53,117],"developed.":[14],"We":[15],"first":[16],"show":[17],"that":[18,44],"the":[19,22,35,46,65,79,82,100,103],"columns":[20],"array":[23],"covariance":[24],"matrix":[25],"can":[26],"be":[27],"formulated":[28],"as":[29],"under-sampled":[30],"noisy":[31],"linear":[32],"measurements":[33],"spatial":[36],"spectrum.":[37],"Then,":[38],"convolution":[41],"network":[42],"(DCN)":[43],"learns":[45],"inverse":[47],"transformation":[48],"from":[49],"large":[50],"training":[51],"dataset":[52],"introduced.":[54],"contrast":[56],"to":[57,90],"traditional":[58],"sparsity-inducing":[59],"methods":[60],"with":[61],"computationally":[62],"complex":[63],"iterations,":[64],"proposed":[66,104],"DCN-based":[67],"could":[69],"efficiently":[70],"obtain":[71],"DOA":[72,86,108],"estimates":[73],"in":[74,106],"near":[75],"real":[76],"time.":[77],"Moreover,":[78],"utilization":[80],"sparsity":[83],"prior":[84],"improves":[85],"performance":[88],"compared":[89],"existing":[91],"based":[94],"methods.":[95],"Simulation":[96],"results":[97],"have":[98],"demonstrated":[99],"superiority":[101],"method":[105],"both":[107],"precision":[110],"and":[111],"computation":[112],"efficiency":[113],"especially":[114],"when":[115],"SNR":[116],"low.":[118]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2978977033","counts_by_year":[{"year":2025,"cited_by_count":3},{"year":2024,"cited_by_count":42},{"year":2023,"cited_by_count":39},{"year":2022,"cited_by_count":25},{"year":2021,"cited_by_count":32},{"year":2020,"cited_by_count":7},{"year":2019,"cited_by_count":3}],"updated_date":"2025-03-31T00:43:13.576922","created_date":"2019-10-10"}