{"id":"https://openalex.org/W3187916498","doi":"https://doi.org/10.1109/lra.2021.3096495","title":"Towards an Interpretable Deep Driving Network by Attentional Bottleneck","display_name":"Towards an Interpretable Deep Driving Network by Attentional Bottleneck","publication_year":2021,"publication_date":"2021-07-13","ids":{"openalex":"https://openalex.org/W3187916498","doi":"https://doi.org/10.1109/lra.2021.3096495","mag":"3187916498"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/lra.2021.3096495","pdf_url":null,"source":{"id":"https://openalex.org/S4210169774","display_name":"IEEE Robotics and Automation Letters","issn_l":"2377-3766","issn":["2377-3766"],"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310319808","host_organization_name":"Institute of Electrical and Electronics Engineers","host_organization_lineage":["https://openalex.org/P4310319808"],"host_organization_lineage_names":["Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"journal-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5061842716","display_name":"Jinkyu Kim","orcid":"https://orcid.org/0000-0001-6520-2074"},"institutions":[{"id":"https://openalex.org/I197347611","display_name":"Korea University","ror":"https://ror.org/047dqcg40","country_code":"KR","type":"funder","lineage":["https://openalex.org/I197347611"]}],"countries":["KR"],"is_corresponding":false,"raw_author_name":"Jinkyu Kim","raw_affiliation_strings":["Department of Computer Science and Engineering, Korea University, Seoul, South Korea","Waymo LLC, Mountain View, CA, USA"],"affiliations":[{"raw_affiliation_string":"Waymo LLC, Mountain View, CA, USA","institution_ids":[]},{"raw_affiliation_string":"Department of Computer Science and Engineering, Korea University, Seoul, South Korea","institution_ids":["https://openalex.org/I197347611"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5077640190","display_name":"Mayank Bansal","orcid":"https://orcid.org/0000-0002-5798-5352"},"institutions":[],"countries":["US"],"is_corresponding":false,"raw_author_name":"Mayank Bansal","raw_affiliation_strings":["Waymo LLC, Mountain View, CA, USA"],"affiliations":[{"raw_affiliation_string":"Waymo LLC, Mountain View, CA, USA","institution_ids":[]}]}],"institution_assertions":[],"countries_distinct_count":2,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.495,"has_fulltext":false,"cited_by_count":5,"citation_normalized_percentile":{"value":0.465472,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":78,"max":80},"biblio":{"volume":"6","issue":"4","first_page":"7349","last_page":"7356"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10036","display_name":"Advanced Neural Network Applications","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10036","display_name":"Advanced Neural Network Applications","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11099","display_name":"Autonomous Vehicle Technology and Safety","score":0.9995,"subfield":{"id":"https://openalex.org/subfields/2203","display_name":"Automotive Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11689","display_name":"Adversarial Robustness in Machine Learning","score":0.996,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/information-bottleneck-method","display_name":"Information bottleneck method","score":0.5577065},{"id":"https://openalex.org/keywords/component","display_name":"Component (thermodynamics)","score":0.55060804}],"concepts":[{"id":"https://openalex.org/C2780513914","wikidata":"https://www.wikidata.org/wiki/Q18210350","display_name":"Bottleneck","level":2,"score":0.9699532},{"id":"https://openalex.org/C2780233690","wikidata":"https://www.wikidata.org/wiki/Q535347","display_name":"Transparency (behavior)","level":2,"score":0.853519},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.7393359},{"id":"https://openalex.org/C26517878","wikidata":"https://www.wikidata.org/wiki/Q228039","display_name":"Key (lock)","level":2,"score":0.70318294},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.62834996},{"id":"https://openalex.org/C60008888","wikidata":"https://www.wikidata.org/wiki/Q6031013","display_name":"Information bottleneck method","level":3,"score":0.5577065},{"id":"https://openalex.org/C168167062","wikidata":"https://www.wikidata.org/wiki/Q1117970","display_name":"Component (thermodynamics)","level":2,"score":0.55060804},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.47312325},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.46983644},{"id":"https://openalex.org/C107457646","wikidata":"https://www.wikidata.org/wiki/Q207434","display_name":"Human\u2013computer interaction","level":1,"score":0.34886977},{"id":"https://openalex.org/C38652104","wikidata":"https://www.wikidata.org/wiki/Q3510521","display_name":"Computer security","level":1,"score":0.12569138},{"id":"https://openalex.org/C152139883","wikidata":"https://www.wikidata.org/wiki/Q252973","display_name":"Mutual information","level":2,"score":0.0},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C97355855","wikidata":"https://www.wikidata.org/wiki/Q11473","display_name":"Thermodynamics","level":1,"score":0.0},{"id":"https://openalex.org/C149635348","wikidata":"https://www.wikidata.org/wiki/Q193040","display_name":"Embedded system","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/lra.2021.3096495","pdf_url":null,"source":{"id":"https://openalex.org/S4210169774","display_name":"IEEE Robotics and Automation Letters","issn_l":"2377-3766","issn":["2377-3766"],"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310319808","host_organization_name":"Institute of Electrical and Electronics Engineers","host_organization_lineage":["https://openalex.org/P4310319808"],"host_organization_lineage_names":["Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[{"funder":"https://openalex.org/F4320322120","funder_display_name":"National Research Foundation of Korea","award_id":"NRF-2021R1C1C1009608"}],"datasets":[],"versions":[],"referenced_works_count":41,"referenced_works":["https://openalex.org/W1514535095","https://openalex.org/W1522301498","https://openalex.org/W1686946872","https://openalex.org/W2119112357","https://openalex.org/W2136891917","https://openalex.org/W2167224731","https://openalex.org/W2342840547","https://openalex.org/W2398870399","https://openalex.org/W2412782625","https://openalex.org/W2559767995","https://openalex.org/W2559918205","https://openalex.org/W2883512601","https://openalex.org/W2885138528","https://openalex.org/W2887286974","https://openalex.org/W2899302124","https://openalex.org/W2905173465","https://openalex.org/W2913854057","https://openalex.org/W2962705976","https://openalex.org/W2962894046","https://openalex.org/W2963016445","https://openalex.org/W2963403868","https://openalex.org/W2963588298","https://openalex.org/W2963609017","https://openalex.org/W2963727600","https://openalex.org/W2964009285","https://openalex.org/W2964121744","https://openalex.org/W2964160479","https://openalex.org/W2967895468","https://openalex.org/W2968008415","https://openalex.org/W2979328474","https://openalex.org/W2979454998","https://openalex.org/W2982419388","https://openalex.org/W2996657638","https://openalex.org/W3003639745","https://openalex.org/W3028769608","https://openalex.org/W3035337382","https://openalex.org/W4287907717","https://openalex.org/W4288279890","https://openalex.org/W4293469690","https://openalex.org/W4299805595","https://openalex.org/W4385245566"],"related_works":["https://openalex.org/W4300774107","https://openalex.org/W3187916498","https://openalex.org/W3034514369","https://openalex.org/W3023118768","https://openalex.org/W2996506326","https://openalex.org/W2950826591","https://openalex.org/W2622284819","https://openalex.org/W2381356463","https://openalex.org/W2070945723","https://openalex.org/W1504394672"],"abstract_inverted_index":{"Deep":[0],"neural":[1],"networks":[2],"are":[3,86],"a":[4,22,140],"key":[5,52],"component":[6],"of":[7,17,24,48,63,82],"behavior":[8],"prediction":[9],"and":[10,93],"motion":[11],"generation":[12],"for":[13,33],"self-driving":[14],"cars.":[15],"One":[16],"their":[18],"main":[19],"drawbacks":[20],"is":[21,54,68],"lack":[23],"transparency:":[25],"they":[26],"should":[27],"provide":[28],"easy":[29],"to":[30,55,78,114,128],"interpret":[31],"rationales":[32],"what":[34,61],"triggers":[35],"certain":[36],"behaviors.":[37],"We":[38],"propose":[39],"an":[40,71],"architecture":[41],"called":[42],"Attentional":[43,126],"Bottleneck":[44,127],"with":[45,70,139],"the":[46,64,66,76,83,104,129,136],"goal":[47],"improving":[49],"transparency.":[50],"Our":[51],"idea":[53],"combine":[56],"visual":[57,142],"attention,":[58],"which":[59,85],"identifies":[60],"aspects":[62,81],"input":[65,84],"model":[67,77,115],"using,":[69],"information":[72],"bottleneck":[73],"that":[74,135],"enables":[75],"only":[79,90,99],"use":[80],"important.":[87],"This":[88],"not":[89],"provides":[91],"sparse":[92],"interpretable":[94],"attention":[95,143],"maps":[96],"(e.g.":[97],"focusing":[98],"on":[100],"specific":[101],"vehicles":[102],"in":[103,122],"scene),":[105],"but":[106],"it":[107],"adds":[108],"this":[109],"transparency":[110],"at":[111],"no":[112],"cost":[113],"accuracy.":[116],"In":[117],"fact,":[118],"we":[119,133],"find":[120,134],"improvements":[121],"accuracy":[123,137],"when":[124],"applying":[125],"ChauffeurNet":[130],"model,":[131],"whereas":[132],"deteriorates":[138],"traditional":[141],"model.":[144]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W3187916498","counts_by_year":[{"year":2023,"cited_by_count":3},{"year":2022,"cited_by_count":2}],"updated_date":"2025-03-20T11:41:18.316302","created_date":"2021-08-16"}