{"id":"https://openalex.org/W3085087333","doi":"https://doi.org/10.1109/lgrs.2020.3021210","title":"Context Union Edge Network for Semantic Segmentation of Small-Scale Objects in Very High Resolution Remote Sensing Images","display_name":"Context Union Edge Network for Semantic Segmentation of Small-Scale Objects in Very High Resolution Remote Sensing Images","publication_year":2020,"publication_date":"2020-09-14","ids":{"openalex":"https://openalex.org/W3085087333","doi":"https://doi.org/10.1109/lgrs.2020.3021210","mag":"3085087333"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/lgrs.2020.3021210","pdf_url":null,"source":{"id":"https://openalex.org/S126920919","display_name":"IEEE Geoscience and Remote Sensing Letters","issn_l":"1545-598X","issn":["1545-598X","1558-0571"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310319808","host_organization_name":"Institute of Electrical and Electronics Engineers","host_organization_lineage":["https://openalex.org/P4310319808"],"host_organization_lineage_names":["Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"journal-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5036258937","display_name":"Yanwen Chong","orcid":"https://orcid.org/0000-0002-7944-8515"},"institutions":[{"id":"https://openalex.org/I37461747","display_name":"Wuhan University","ror":"https://ror.org/033vjfk17","country_code":"CN","type":"education","lineage":["https://openalex.org/I37461747"]},{"id":"https://openalex.org/I4210118728","display_name":"State Key Laboratory of Information Engineering in Surveying Mapping and Remote Sensing","ror":"https://ror.org/02bpap860","country_code":"CN","type":"facility","lineage":["https://openalex.org/I4210118728"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Yanwen Chong","raw_affiliation_strings":["State Key Laboratory of Information Engineering in Surveying, Mapping, and Remote Sensing, Wuhan University, Wuhan, China"],"affiliations":[{"raw_affiliation_string":"State Key Laboratory of Information Engineering in Surveying, Mapping, and Remote Sensing, Wuhan University, Wuhan, China","institution_ids":["https://openalex.org/I37461747","https://openalex.org/I4210118728"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5063673643","display_name":"Xiaoshu Chen","orcid":"https://orcid.org/0000-0003-0704-4543"},"institutions":[{"id":"https://openalex.org/I4210118728","display_name":"State Key Laboratory of Information Engineering in Surveying Mapping and Remote Sensing","ror":"https://ror.org/02bpap860","country_code":"CN","type":"facility","lineage":["https://openalex.org/I4210118728"]},{"id":"https://openalex.org/I37461747","display_name":"Wuhan University","ror":"https://ror.org/033vjfk17","country_code":"CN","type":"education","lineage":["https://openalex.org/I37461747"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Xiaoshu Chen","raw_affiliation_strings":["State Key Laboratory of Information Engineering in Surveying, Mapping, and Remote Sensing, Wuhan University, Wuhan, China"],"affiliations":[{"raw_affiliation_string":"State Key Laboratory of Information Engineering in Surveying, Mapping, and Remote Sensing, Wuhan University, Wuhan, China","institution_ids":["https://openalex.org/I4210118728","https://openalex.org/I37461747"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5049671371","display_name":"Shaoming Pan","orcid":"https://orcid.org/0000-0001-6789-3876"},"institutions":[{"id":"https://openalex.org/I4210118728","display_name":"State Key Laboratory of Information Engineering in Surveying Mapping and Remote Sensing","ror":"https://ror.org/02bpap860","country_code":"CN","type":"facility","lineage":["https://openalex.org/I4210118728"]},{"id":"https://openalex.org/I37461747","display_name":"Wuhan University","ror":"https://ror.org/033vjfk17","country_code":"CN","type":"education","lineage":["https://openalex.org/I37461747"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Shaoming Pan","raw_affiliation_strings":["State Key Laboratory of Information Engineering in Surveying, Mapping, and Remote Sensing, Wuhan University, Wuhan, China"],"affiliations":[{"raw_affiliation_string":"State Key Laboratory of Information Engineering in Surveying, Mapping, and Remote Sensing, Wuhan University, Wuhan, China","institution_ids":["https://openalex.org/I4210118728","https://openalex.org/I37461747"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":2,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":2.456,"has_fulltext":false,"cited_by_count":25,"citation_normalized_percentile":{"value":0.853706,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":93,"max":94},"biblio":{"volume":"19","issue":null,"first_page":"1","last_page":"5"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10689","display_name":"Remote-Sensing Image Classification","score":0.9997,"subfield":{"id":"https://openalex.org/subfields/2214","display_name":"Media Technology"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10689","display_name":"Remote-Sensing Image Classification","score":0.9997,"subfield":{"id":"https://openalex.org/subfields/2214","display_name":"Media Technology"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10036","display_name":"Advanced Neural Network Applications","score":0.9994,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10331","display_name":"Video Surveillance and Tracking Methods","score":0.9989,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/spatial-contextual-awareness","display_name":"Spatial contextual awareness","score":0.51604414},{"id":"https://openalex.org/keywords/feature","display_name":"Feature (linguistics)","score":0.44872066}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.78439796},{"id":"https://openalex.org/C2779343474","wikidata":"https://www.wikidata.org/wiki/Q3109175","display_name":"Context (archaeology)","level":2,"score":0.6703423},{"id":"https://openalex.org/C2778755073","wikidata":"https://www.wikidata.org/wiki/Q10858537","display_name":"Scale (ratio)","level":2,"score":0.66458875},{"id":"https://openalex.org/C89600930","wikidata":"https://www.wikidata.org/wiki/Q1423946","display_name":"Segmentation","level":2,"score":0.6179948},{"id":"https://openalex.org/C81363708","wikidata":"https://www.wikidata.org/wiki/Q17084460","display_name":"Convolutional neural network","level":2,"score":0.5395756},{"id":"https://openalex.org/C162307627","wikidata":"https://www.wikidata.org/wiki/Q204833","display_name":"Enhanced Data Rates for GSM Evolution","level":2,"score":0.53827155},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.5299424},{"id":"https://openalex.org/C64754055","wikidata":"https://www.wikidata.org/wiki/Q7574053","display_name":"Spatial contextual awareness","level":2,"score":0.51604414},{"id":"https://openalex.org/C124504099","wikidata":"https://www.wikidata.org/wiki/Q56933","display_name":"Image segmentation","level":3,"score":0.46441194},{"id":"https://openalex.org/C2776401178","wikidata":"https://www.wikidata.org/wiki/Q12050496","display_name":"Feature (linguistics)","level":2,"score":0.44872066},{"id":"https://openalex.org/C205372480","wikidata":"https://www.wikidata.org/wiki/Q210521","display_name":"Image resolution","level":2,"score":0.4284494},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.39909443},{"id":"https://openalex.org/C62649853","wikidata":"https://www.wikidata.org/wiki/Q199687","display_name":"Remote sensing","level":1,"score":0.395711},{"id":"https://openalex.org/C31972630","wikidata":"https://www.wikidata.org/wiki/Q844240","display_name":"Computer vision","level":1,"score":0.3771826},{"id":"https://openalex.org/C205649164","wikidata":"https://www.wikidata.org/wiki/Q1071","display_name":"Geography","level":0,"score":0.121805966},{"id":"https://openalex.org/C58640448","wikidata":"https://www.wikidata.org/wiki/Q42515","display_name":"Cartography","level":1,"score":0.110972375},{"id":"https://openalex.org/C41895202","wikidata":"https://www.wikidata.org/wiki/Q8162","display_name":"Linguistics","level":1,"score":0.0},{"id":"https://openalex.org/C138885662","wikidata":"https://www.wikidata.org/wiki/Q5891","display_name":"Philosophy","level":0,"score":0.0},{"id":"https://openalex.org/C166957645","wikidata":"https://www.wikidata.org/wiki/Q23498","display_name":"Archaeology","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/lgrs.2020.3021210","pdf_url":null,"source":{"id":"https://openalex.org/S126920919","display_name":"IEEE Geoscience and Remote Sensing Letters","issn_l":"1545-598X","issn":["1545-598X","1558-0571"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310319808","host_organization_name":"Institute of Electrical and Electronics Engineers","host_organization_lineage":["https://openalex.org/P4310319808"],"host_organization_lineage_names":["Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[{"funder":"https://openalex.org/F4320321001","funder_display_name":"National Natural Science Foundation of China","award_id":"61572372"},{"funder":"https://openalex.org/F4320321001","funder_display_name":"National Natural Science Foundation of China","award_id":"41671382"},{"funder":"https://openalex.org/F4320326938","funder_display_name":"State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing","award_id":null}],"datasets":[],"versions":[],"referenced_works_count":21,"referenced_works":["https://openalex.org/W1903029394","https://openalex.org/W1909515874","https://openalex.org/W2194775991","https://openalex.org/W2306289963","https://openalex.org/W2412782625","https://openalex.org/W2480078828","https://openalex.org/W2488187315","https://openalex.org/W2527276685","https://openalex.org/W2610528085","https://openalex.org/W2630837129","https://openalex.org/W2787091153","https://openalex.org/W2793268137","https://openalex.org/W2908943032","https://openalex.org/W2940262938","https://openalex.org/W2955058313","https://openalex.org/W2963091558","https://openalex.org/W2963378109","https://openalex.org/W2963420686","https://openalex.org/W2963659230","https://openalex.org/W2982826170","https://openalex.org/W2991471181"],"related_works":["https://openalex.org/W2613186388","https://openalex.org/W2517104666","https://openalex.org/W2436032119","https://openalex.org/W2134924024","https://openalex.org/W2110230079","https://openalex.org/W2023558673","https://openalex.org/W2008656436","https://openalex.org/W2005437358","https://openalex.org/W1982826852","https://openalex.org/W1669643531"],"abstract_inverted_index":{"Semantic":[0],"segmentation":[1,96],"of":[2,27,123,150,167,179,187],"small-scale":[3,35,62,69,93,127,151,182],"objects":[4,36,63,70,94,183],"in":[5,17,165],"very":[6],"high":[7],"resolution":[8],"(VHR)":[9],"remote":[10],"sensing":[11],"images":[12],"plays":[13],"an":[14,130],"important":[15],"role":[16],"some":[18,154],"special":[19],"tasks,":[20],"such":[21],"as":[22],"change":[23],"detection":[24],"and":[25,105,142,172,185],"mapping":[26],"land":[28],"cover.":[29],"However,":[30],"due":[31],"to":[32,40,60,78,119,125,146],"small":[33],"size,":[34],"are":[37,71,75,163],"more":[38],"likely":[39],"be":[41],"completely":[42],"obscured":[43],"by":[44,99],"shadows":[45],"than":[46],"large-scale":[47],"objects,":[48],"which":[49],"make":[50],"it":[51],"difficult":[52,77],"for":[53,92,181],"the":[54,82,103,121,139,148,158],"traditional":[55],"convolutional":[56],"neural":[57],"network":[58,90,145],"(CNN)":[59],"distinguish":[61,126],"from":[64],"shadows.":[65],"Furthermore,":[66],"even":[67],"if":[68],"distinguished,":[72],"their":[73],"boundaries":[74,149],"still":[76],"refine.":[79],"To":[80],"solve":[81],"above":[83],"problems,":[84],"a":[85,110],"novel":[86],"context":[87],"union":[88],"edge":[89,106,143],"(CEN)":[91],"semantic":[95],"is":[97,117,135],"proposed":[98,136,175],"comprehensively":[100],"considering":[101],"both":[102,168],"contextual":[104],"information.":[107],"In":[108],"CEN,":[109],"plug-and-play":[111],"context-based":[112],"feature":[113],"enhancement":[114],"module":[115],"(CFEM)":[116],"designed":[118],"enhance":[120],"ability":[122],"CNNs":[124],"objects.":[128,152],"Then,":[129],"information":[131],"exchange":[132],"mechanism":[133],"(IEM)":[134],"based":[137,156],"on":[138,157],"dual-stream":[140],"(semantic":[141],"stream)":[144],"refine":[147],"Finally,":[153],"experiments":[155],"ISPRS":[159],"Vaihingen":[160],"data":[161],"set":[162],"conducted":[164],"terms":[166],"overall":[169],"accuracy":[170],"(OA)":[171],"F1-score.":[173],"The":[174],"CEN":[176],"achieves":[177],"89.9%":[178],"F1-score":[180],"(cars)":[184],"90.9%":[186],"OA,":[188],"harvesting":[189],"new":[190],"state-of-the-art":[191],"results.":[192]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W3085087333","counts_by_year":[{"year":2024,"cited_by_count":6},{"year":2023,"cited_by_count":10},{"year":2022,"cited_by_count":4},{"year":2021,"cited_by_count":5}],"updated_date":"2024-12-12T07:06:25.135535","created_date":"2020-09-21"}