{"id":"https://openalex.org/W2293015977","doi":"https://doi.org/10.1109/latincom.2015.7430127","title":"EM algorithm on the approximation of arbitrary PDFs by Gaussian, gamma and lognormal mixture distributions","display_name":"EM algorithm on the approximation of arbitrary PDFs by Gaussian, gamma and lognormal mixture distributions","publication_year":2015,"publication_date":"2015-11-01","ids":{"openalex":"https://openalex.org/W2293015977","doi":"https://doi.org/10.1109/latincom.2015.7430127","mag":"2293015977"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/latincom.2015.7430127","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5022561287","display_name":"Vinicius R. da Silva","orcid":null},"institutions":[{"id":"https://openalex.org/I9374425","display_name":"Ottawa University","ror":"https://ror.org/04jscf286","country_code":"US","type":"education","lineage":["https://openalex.org/I9374425"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Vinicius R. da Silva","raw_affiliation_strings":["School of Electrical Engineering and Computer Science, University of Ottawa, Ottawa, ON, CA"],"affiliations":[{"raw_affiliation_string":"School of Electrical Engineering and Computer Science, University of Ottawa, Ottawa, ON, CA","institution_ids":["https://openalex.org/I9374425"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5058782794","display_name":"Abbas Yonga\u00e7o\u011flu","orcid":"https://orcid.org/0000-0001-5517-6220"},"institutions":[{"id":"https://openalex.org/I9374425","display_name":"Ottawa University","ror":"https://ror.org/04jscf286","country_code":"US","type":"education","lineage":["https://openalex.org/I9374425"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Abbas Yongacoglu","raw_affiliation_strings":["School of Electrical Engineering and Computer Science, University of Ottawa, Ottawa, ON, CA"],"affiliations":[{"raw_affiliation_string":"School of Electrical Engineering and Computer Science, University of Ottawa, Ottawa, ON, CA","institution_ids":["https://openalex.org/I9374425"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.449,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":6,"citation_normalized_percentile":{"value":0.719294,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":82,"max":83},"biblio":{"volume":null,"issue":null,"first_page":"1","last_page":"6"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10575","display_name":"Wireless Communication Networks Research","score":0.9997,"subfield":{"id":"https://openalex.org/subfields/1705","display_name":"Computer Networks and Communications"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10575","display_name":"Wireless Communication Networks Research","score":0.9997,"subfield":{"id":"https://openalex.org/subfields/1705","display_name":"Computer Networks and Communications"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10125","display_name":"Advanced Wireless Communication Techniques","score":0.9993,"subfield":{"id":"https://openalex.org/subfields/2208","display_name":"Electrical and Electronic Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10148","display_name":"Advanced MIMO Systems Optimization","score":0.9976,"subfield":{"id":"https://openalex.org/subfields/2208","display_name":"Electrical and Electronic Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/log-normal-distribution","display_name":"Log-normal distribution","score":0.8679875},{"id":"https://openalex.org/keywords/generalized-gamma-distribution","display_name":"Generalized gamma distribution","score":0.54685277},{"id":"https://openalex.org/keywords/inverse-gamma-distribution","display_name":"Inverse-gamma distribution","score":0.44092554}],"concepts":[{"id":"https://openalex.org/C151620405","wikidata":"https://www.wikidata.org/wiki/Q826116","display_name":"Log-normal distribution","level":2,"score":0.8679875},{"id":"https://openalex.org/C149717495","wikidata":"https://www.wikidata.org/wiki/Q117806","display_name":"Gamma distribution","level":2,"score":0.67424595},{"id":"https://openalex.org/C61224824","wikidata":"https://www.wikidata.org/wiki/Q2260434","display_name":"Mixture model","level":2,"score":0.6072852},{"id":"https://openalex.org/C163716315","wikidata":"https://www.wikidata.org/wiki/Q901177","display_name":"Gaussian","level":2,"score":0.5852241},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.57055265},{"id":"https://openalex.org/C42337464","wikidata":"https://www.wikidata.org/wiki/Q5532478","display_name":"Generalized gamma distribution","level":3,"score":0.54685277},{"id":"https://openalex.org/C182081679","wikidata":"https://www.wikidata.org/wiki/Q1275153","display_name":"Expectation\u2013maximization algorithm","level":3,"score":0.5153022},{"id":"https://openalex.org/C197055811","wikidata":"https://www.wikidata.org/wiki/Q207522","display_name":"Probability density function","level":2,"score":0.5118248},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.4827906},{"id":"https://openalex.org/C4646027","wikidata":"https://www.wikidata.org/wiki/Q3258521","display_name":"Inverse-gamma distribution","level":5,"score":0.44092554},{"id":"https://openalex.org/C149441793","wikidata":"https://www.wikidata.org/wiki/Q200726","display_name":"Probability distribution","level":2,"score":0.43814394},{"id":"https://openalex.org/C28826006","wikidata":"https://www.wikidata.org/wiki/Q33521","display_name":"Applied mathematics","level":1,"score":0.43719733},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.4344784},{"id":"https://openalex.org/C126255220","wikidata":"https://www.wikidata.org/wiki/Q141495","display_name":"Mathematical optimization","level":1,"score":0.43118697},{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.28968677},{"id":"https://openalex.org/C160947583","wikidata":"https://www.wikidata.org/wiki/Q2083147","display_name":"Distribution fitting","level":3,"score":0.20229974},{"id":"https://openalex.org/C49781872","wikidata":"https://www.wikidata.org/wiki/Q1045555","display_name":"Maximum likelihood","level":2,"score":0.160618},{"id":"https://openalex.org/C57205106","wikidata":"https://www.wikidata.org/wiki/Q3258519","display_name":"Inverse-chi-squared distribution","level":4,"score":0.14040849},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.084709436},{"id":"https://openalex.org/C62520636","wikidata":"https://www.wikidata.org/wiki/Q944","display_name":"Quantum mechanics","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/latincom.2015.7430127","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":6,"referenced_works":["https://openalex.org/W1486632395","https://openalex.org/W1985690171","https://openalex.org/W1990796670","https://openalex.org/W2037322818","https://openalex.org/W2104322778","https://openalex.org/W2156010446"],"related_works":["https://openalex.org/W2484264553","https://openalex.org/W2350227674","https://openalex.org/W2293015977","https://openalex.org/W2183682112","https://openalex.org/W2183633374","https://openalex.org/W2136304774","https://openalex.org/W2080246011","https://openalex.org/W2063284298","https://openalex.org/W202202135","https://openalex.org/W1889703440"],"abstract_inverted_index":{"In":[0],"wireless":[1],"communication":[2],"systems,":[3],"finding":[4],"a":[5,16,24,63,135],"model":[6,77,100],"to":[7,76,101,120,155],"describe":[8,47],"shadow":[9],"fading":[10],"that":[11,26],"is":[12,23,27,35,50],"easy-to-work":[13],"and":[14,146,170],"has":[15,59],"good":[17,116],"fidelity":[18],"with":[19],"the":[20,29,37,43,53,68,71,83,87,95,103,107,121,138,157,162,168],"observed":[21],"phenomena":[22],"topic":[25],"receiving":[28],"attention":[30],"of":[31,70,86,97,106,123,140,164,167],"several":[32],"studies.":[33],"This":[34,112],"because":[36],"well-known":[38],"lognormal":[39,98,147],"model,":[40],"discussed":[41],"in":[42,52,74,132],"literature,":[44],"does":[45],"not":[46],"accurately":[48],"what":[49],"experienced":[51],"real":[54],"world.":[55],"Because":[56],"gamma":[57,72],"distribution":[58,105,122],"closed":[60],"form":[61],"expressions":[62],"few":[64],"authors":[65,92],"have":[66,93],"proposed":[67,94],"use":[69,96],"PDF":[73],"order":[75],"shadowing":[78],"effect,":[79],"since":[80],"it":[81],"facilitates":[82],"mathematical":[84],"analysis":[85],"system":[88],"being":[89],"designed.":[90],"Other":[91],"mixture":[99,148],"approximate":[102],"probability":[104],"local":[108],"mean":[109],"received":[110],"power.":[111],"last":[113],"approach":[114],"yielded":[115],"results":[117,163],"when":[118],"compared":[119],"actual":[124],"measurements.":[125],"Motivated":[126],"by":[127,143],"these":[128],"facts,":[129],"we":[130],"present":[131],"this":[133],"paper":[134],"study":[136],"on":[137],"approximation":[139],"arbitrary":[141],"PDFs":[142],"Gaussian,":[144],"gamma,":[145],"models":[149],"using":[150],"Expectation":[151],"Maximization":[152],"(EM)":[153],"algorithm":[154],"estimate":[156],"necessary":[158],"parameters.":[159],"We":[160],"show":[161],"our":[165],"implementation":[166],"algorithms":[169],"discuss":[171],"important":[172],"insights":[173],"about":[174],"them.":[175]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2293015977","counts_by_year":[{"year":2024,"cited_by_count":1},{"year":2023,"cited_by_count":1},{"year":2021,"cited_by_count":2},{"year":2018,"cited_by_count":1},{"year":2017,"cited_by_count":1}],"updated_date":"2024-12-11T21:20:44.002212","created_date":"2016-06-24"}