{"id":"https://openalex.org/W4282562155","doi":"https://doi.org/10.1109/lascas53948.2022.9789045","title":"A Novel Single Lead to 12-Lead ECG Reconstruction Methodology Using Convolutional Neural Networks and LSTM","display_name":"A Novel Single Lead to 12-Lead ECG Reconstruction Methodology Using Convolutional Neural Networks and LSTM","publication_year":2022,"publication_date":"2022-03-01","ids":{"openalex":"https://openalex.org/W4282562155","doi":"https://doi.org/10.1109/lascas53948.2022.9789045"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/lascas53948.2022.9789045","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5013780286","display_name":"Vishnuvardhan Gundlapalle","orcid":null},"institutions":[{"id":"https://openalex.org/I65181880","display_name":"Indian Institute of Technology Hyderabad","ror":"https://ror.org/01j4v3x97","country_code":"IN","type":"education","lineage":["https://openalex.org/I65181880"]}],"countries":["IN"],"is_corresponding":false,"raw_author_name":"Vishnuvardhan Gundlapalle","raw_affiliation_strings":["IIT,Department of Electrical Engineering,Hyderabad,Telangana,India,502285"],"affiliations":[{"raw_affiliation_string":"IIT,Department of Electrical Engineering,Hyderabad,Telangana,India,502285","institution_ids":["https://openalex.org/I65181880"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5044085104","display_name":"Amit Acharyya","orcid":"https://orcid.org/0000-0002-5636-0676"},"institutions":[{"id":"https://openalex.org/I65181880","display_name":"Indian Institute of Technology Hyderabad","ror":"https://ror.org/01j4v3x97","country_code":"IN","type":"education","lineage":["https://openalex.org/I65181880"]}],"countries":["IN"],"is_corresponding":false,"raw_author_name":"Amit Acharyya","raw_affiliation_strings":["IIT,Department of Electrical Engineering,Hyderabad,Telangana,India,502285"],"affiliations":[{"raw_affiliation_string":"IIT,Department of Electrical Engineering,Hyderabad,Telangana,India,502285","institution_ids":["https://openalex.org/I65181880"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":2.223,"has_fulltext":false,"cited_by_count":8,"citation_normalized_percentile":{"value":0.999957,"is_in_top_1_percent":true,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":89,"max":90},"biblio":{"volume":null,"issue":null,"first_page":"01","last_page":"04"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11021","display_name":"ECG Monitoring and Analysis","score":1.0,"subfield":{"id":"https://openalex.org/subfields/2705","display_name":"Cardiology and Cardiovascular Medicine"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}},"topics":[{"id":"https://openalex.org/T11021","display_name":"ECG Monitoring and Analysis","score":1.0,"subfield":{"id":"https://openalex.org/subfields/2705","display_name":"Cardiology and Cardiovascular Medicine"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}},{"id":"https://openalex.org/T10429","display_name":"EEG and Brain-Computer Interfaces","score":0.9976,"subfield":{"id":"https://openalex.org/subfields/2805","display_name":"Cognitive Neuroscience"},"field":{"id":"https://openalex.org/fields/28","display_name":"Neuroscience"},"domain":{"id":"https://openalex.org/domains/1","display_name":"Life Sciences"}},{"id":"https://openalex.org/T11196","display_name":"Non-Invasive Vital Sign Monitoring","score":0.9856,"subfield":{"id":"https://openalex.org/subfields/2204","display_name":"Biomedical Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/lead","display_name":"Lead (geology)","score":0.8098185},{"id":"https://openalex.org/keywords/convolution","display_name":"Convolution (computer science)","score":0.660555},{"id":"https://openalex.org/keywords/lead-time","display_name":"Lead time","score":0.45945364}],"concepts":[{"id":"https://openalex.org/C2777093003","wikidata":"https://www.wikidata.org/wiki/Q6508345","display_name":"Lead (geology)","level":2,"score":0.8098185},{"id":"https://openalex.org/C45347329","wikidata":"https://www.wikidata.org/wiki/Q5166604","display_name":"Convolution (computer science)","level":3,"score":0.660555},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.6274036},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.5956945},{"id":"https://openalex.org/C81363708","wikidata":"https://www.wikidata.org/wiki/Q17084460","display_name":"Convolutional neural network","level":2,"score":0.5864516},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.58377236},{"id":"https://openalex.org/C108583219","wikidata":"https://www.wikidata.org/wiki/Q197536","display_name":"Deep learning","level":2,"score":0.58219254},{"id":"https://openalex.org/C2780092901","wikidata":"https://www.wikidata.org/wiki/Q3433612","display_name":"Correlation coefficient","level":2,"score":0.4699369},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.46951622},{"id":"https://openalex.org/C2781468064","wikidata":"https://www.wikidata.org/wiki/Q1267117","display_name":"Lead time","level":2,"score":0.45945364},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.27833018},{"id":"https://openalex.org/C127413603","wikidata":"https://www.wikidata.org/wiki/Q11023","display_name":"Engineering","level":0,"score":0.10866764},{"id":"https://openalex.org/C21547014","wikidata":"https://www.wikidata.org/wiki/Q1423657","display_name":"Operations management","level":1,"score":0.0},{"id":"https://openalex.org/C114793014","wikidata":"https://www.wikidata.org/wiki/Q52109","display_name":"Geomorphology","level":1,"score":0.0},{"id":"https://openalex.org/C127313418","wikidata":"https://www.wikidata.org/wiki/Q1069","display_name":"Geology","level":0,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/lascas53948.2022.9789045","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"id":"https://metadata.un.org/sdg/3","display_name":"Good health and well-being","score":0.65}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":20,"referenced_works":["https://openalex.org/W1964310537","https://openalex.org/W1968680886","https://openalex.org/W1969629967","https://openalex.org/W2015906119","https://openalex.org/W2017859857","https://openalex.org/W2044932679","https://openalex.org/W2051162207","https://openalex.org/W2061185532","https://openalex.org/W2090584128","https://openalex.org/W2092480860","https://openalex.org/W2111285723","https://openalex.org/W2114959844","https://openalex.org/W2149735249","https://openalex.org/W2153921193","https://openalex.org/W2205926268","https://openalex.org/W2268696916","https://openalex.org/W2558013165","https://openalex.org/W2979465025","https://openalex.org/W3023858750","https://openalex.org/W3042066702"],"related_works":["https://openalex.org/W4291265047","https://openalex.org/W4286841477","https://openalex.org/W4255463199","https://openalex.org/W3153279542","https://openalex.org/W3108315613","https://openalex.org/W3019910406","https://openalex.org/W2964954556","https://openalex.org/W2411039299","https://openalex.org/W2318949977","https://openalex.org/W1856410221"],"abstract_inverted_index":{"The":[0,172,191],"Electrocardiogram":[1],"(ECG)":[2],"is":[3,17,54,98],"a":[4,55,73,153],"useful":[5],"diagnostic":[6],"tool":[7],"to":[8,41,57,77,104,122],"diagnose":[9],"cardiovascular":[10],"diseases":[11],"(CVD).":[12],"Standard":[13],"12-Lead":[14,78],"ECG":[15,32,79],"setup":[16,37],"most":[18],"commonly":[19],"used":[20],"by":[21],"doctors":[22],"for":[23,68,168],"the":[24,27,39,59,94,101,106,123,166,197,201],"diagnosis.":[25],"But":[26],"promising":[28],"type":[29],"of":[30,200],"wearable":[31],"device":[33],"uses":[34],"minimal":[35],"wire":[36],"on":[38,177],"body":[40],"increase":[42],"patients'":[43],"comfort":[44],"resulting":[45],"in":[46],"fewer":[47],"recorded":[48,65],"leads,":[49],"mainly":[50],"single":[51],"lead.":[52],"There":[53],"need":[56,167],"reconstruct":[58,105],"remaining":[60,107],"leads":[61,109,128,199],"from":[62,181],"these":[63],"less":[64],"leads.":[66],"Accounting":[67],"this,":[69],"we":[70],"are":[71,150],"proposing":[72],"novel":[74],"Single":[75],"Lead":[76],"reconstruction":[80],"methodology":[81,174],"using":[82,152,156,183],"convolution":[83],"neural":[84],"networks":[85],"(CNN)":[86],"and":[87,116,139,148,160,188,209],"long":[88],"short":[89],"term":[90],"memory":[91],"(LSTM).":[92],"In":[93],"proposed":[95,173],"methodology,":[96],"lead-II":[97,136],"taken":[99],"as":[100,137,142],"basis":[102],"lead":[103,158,162],"independent":[108,127],"(I,":[110],"V1,":[111],"V2,":[112],"V3,":[113],"V4,":[114],"V5,":[115],"V6).":[117],"Seven":[118],"individual":[119],"models":[120],"corresponding":[121],"above":[124],"mentioned":[125],"seven":[126],"have":[129],"been":[130],"trained,":[131],"where":[132],"each":[133],"model":[134],"takes":[135],"input":[138],"gives":[140],"I/V1/V2/V3/V4/V5/V6":[141],"output.":[143],"Leads":[144],"III,":[145],"aVR,":[146],"aVL,":[147],"aVF":[149],"reconstructed":[151,161],"standard":[154],"approach":[155],"original":[157],"II":[159],"I":[163],"signals,":[164],"without":[165],"deep":[169],"learning":[170],"models.":[171],"was":[175],"evaluated":[176],"myocardial":[178],"infarction":[179],"data":[180],"PTBDB":[182],"R2":[184],"statistics,":[185],"correlation":[186],"coefficient,":[187],"regression":[189],"coefficient.":[190],"mean":[192],"values":[193],"averaged":[194],"across":[195],"all":[196],"11":[198],"stated":[202],"performance":[203],"metrics":[204],"obtained":[205],"were":[206],"93.62%,":[207],"0.973,":[208],"0.959,":[210],"respectively.":[211]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4282562155","counts_by_year":[{"year":2024,"cited_by_count":2},{"year":2023,"cited_by_count":3},{"year":2022,"cited_by_count":1}],"updated_date":"2024-12-11T11:55:53.298409","created_date":"2022-06-14"}