{"id":"https://openalex.org/W1564111327","doi":"https://doi.org/10.1109/jurse.2015.7120519","title":"Integration of Gaussian process and MRF for hyperspectral image classification","display_name":"Integration of Gaussian process and MRF for hyperspectral image classification","publication_year":2015,"publication_date":"2015-03-01","ids":{"openalex":"https://openalex.org/W1564111327","doi":"https://doi.org/10.1109/jurse.2015.7120519","mag":"1564111327"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/jurse.2015.7120519","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5101803082","display_name":"Wentong Liao","orcid":"https://orcid.org/0000-0002-0244-3863"},"institutions":[{"id":"https://openalex.org/I114112103","display_name":"Leibniz University Hannover","ror":"https://ror.org/0304hq317","country_code":"DE","type":"education","lineage":["https://openalex.org/I114112103"]}],"countries":["DE"],"is_corresponding":false,"raw_author_name":"Wentong Liao","raw_affiliation_strings":["Institute for Information Processing (TNT), Leibniz University Hannover, Appelstr. 9A, 30167, Germany"],"affiliations":[{"raw_affiliation_string":"Institute for Information Processing (TNT), Leibniz University Hannover, Appelstr. 9A, 30167, Germany","institution_ids":["https://openalex.org/I114112103"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5063658399","display_name":"Jun Tang","orcid":"https://orcid.org/0000-0002-9135-3615"},"institutions":[{"id":"https://openalex.org/I114112103","display_name":"Leibniz University Hannover","ror":"https://ror.org/0304hq317","country_code":"DE","type":"education","lineage":["https://openalex.org/I114112103"]}],"countries":["DE"],"is_corresponding":false,"raw_author_name":"Jun Tang","raw_affiliation_strings":["Institute for Information Processing (TNT), Leibniz University Hannover, Appelstr. 9A, 30167, Germany"],"affiliations":[{"raw_affiliation_string":"Institute for Information Processing (TNT), Leibniz University Hannover, Appelstr. 9A, 30167, Germany","institution_ids":["https://openalex.org/I114112103"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5040412734","display_name":"Bodo Rosenhahn","orcid":"https://orcid.org/0000-0003-3861-1424"},"institutions":[{"id":"https://openalex.org/I114112103","display_name":"Leibniz University Hannover","ror":"https://ror.org/0304hq317","country_code":"DE","type":"education","lineage":["https://openalex.org/I114112103"]}],"countries":["DE"],"is_corresponding":false,"raw_author_name":"Bodo Rosenhahn","raw_affiliation_strings":["Institute for Information Processing (TNT), Leibniz University Hannover, Appelstr. 9A, 30167, Germany"],"affiliations":[{"raw_affiliation_string":"Institute for Information Processing (TNT), Leibniz University Hannover, Appelstr. 9A, 30167, Germany","institution_ids":["https://openalex.org/I114112103"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5014321482","display_name":"Michael Ying Yang","orcid":"https://orcid.org/0000-0002-0649-9987"},"institutions":[{"id":"https://openalex.org/I114112103","display_name":"Leibniz University Hannover","ror":"https://ror.org/0304hq317","country_code":"DE","type":"education","lineage":["https://openalex.org/I114112103"]}],"countries":["DE"],"is_corresponding":false,"raw_author_name":"Micheal Ying Yang","raw_affiliation_strings":["Institute for Information Processing (TNT), Leibniz University Hannover, Appelstr. 9A, 30167, Germany"],"affiliations":[{"raw_affiliation_string":"Institute for Information Processing (TNT), Leibniz University Hannover, Appelstr. 9A, 30167, Germany","institution_ids":["https://openalex.org/I114112103"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":1.849,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":5,"citation_normalized_percentile":{"value":0.725983,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":81,"max":82},"biblio":{"volume":null,"issue":null,"first_page":"1","last_page":"4"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10689","display_name":"Remote-Sensing Image Classification","score":0.9982,"subfield":{"id":"https://openalex.org/subfields/2214","display_name":"Media Technology"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10689","display_name":"Remote-Sensing Image Classification","score":0.9982,"subfield":{"id":"https://openalex.org/subfields/2214","display_name":"Media Technology"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12814","display_name":"Gaussian Processes and Bayesian Inference","score":0.998,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10331","display_name":"Video Surveillance and Tracking Methods","score":0.9753,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/markov-random-field","display_name":"Markov random field","score":0.61470735},{"id":"https://openalex.org/keywords/contextual-image-classification","display_name":"Contextual image classification","score":0.5879859}],"concepts":[{"id":"https://openalex.org/C159078339","wikidata":"https://www.wikidata.org/wiki/Q959005","display_name":"Hyperspectral imaging","level":2,"score":0.856633},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.72036016},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.7157477},{"id":"https://openalex.org/C2778045648","wikidata":"https://www.wikidata.org/wiki/Q176827","display_name":"Markov random field","level":4,"score":0.61470735},{"id":"https://openalex.org/C75294576","wikidata":"https://www.wikidata.org/wiki/Q5165192","display_name":"Contextual image classification","level":3,"score":0.5879859},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.5689945},{"id":"https://openalex.org/C160633673","wikidata":"https://www.wikidata.org/wiki/Q355198","display_name":"Pixel","level":2,"score":0.56175697},{"id":"https://openalex.org/C95623464","wikidata":"https://www.wikidata.org/wiki/Q1096149","display_name":"Classifier (UML)","level":2,"score":0.4928265},{"id":"https://openalex.org/C61326573","wikidata":"https://www.wikidata.org/wiki/Q1496376","display_name":"Gaussian process","level":3,"score":0.47496057},{"id":"https://openalex.org/C159620131","wikidata":"https://www.wikidata.org/wiki/Q1938983","display_name":"Spatial analysis","level":2,"score":0.45163},{"id":"https://openalex.org/C163716315","wikidata":"https://www.wikidata.org/wiki/Q901177","display_name":"Gaussian","level":2,"score":0.42296568},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.31091014},{"id":"https://openalex.org/C124504099","wikidata":"https://www.wikidata.org/wiki/Q56933","display_name":"Image segmentation","level":3,"score":0.25115842},{"id":"https://openalex.org/C115961682","wikidata":"https://www.wikidata.org/wiki/Q860623","display_name":"Image (mathematics)","level":2,"score":0.23578805},{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.07652888},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C62520636","wikidata":"https://www.wikidata.org/wiki/Q944","display_name":"Quantum mechanics","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/jurse.2015.7120519","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":20,"referenced_works":["https://openalex.org/W1510526001","https://openalex.org/W1515272691","https://openalex.org/W1746819321","https://openalex.org/W1997063559","https://openalex.org/W2020999234","https://openalex.org/W2032488374","https://openalex.org/W2072819883","https://openalex.org/W2098057602","https://openalex.org/W2100355334","https://openalex.org/W2101711129","https://openalex.org/W2102150301","https://openalex.org/W2103568877","https://openalex.org/W2104269704","https://openalex.org/W2117063635","https://openalex.org/W2136251662","https://openalex.org/W2161767008","https://openalex.org/W2441532642","https://openalex.org/W4211049957","https://openalex.org/W4213262319","https://openalex.org/W4246070010"],"related_works":["https://openalex.org/W4313014865","https://openalex.org/W4230131218","https://openalex.org/W3209970181","https://openalex.org/W3034375524","https://openalex.org/W2404757046","https://openalex.org/W2147064750","https://openalex.org/W2072166414","https://openalex.org/W2070598848","https://openalex.org/W2060875994","https://openalex.org/W2044184146"],"abstract_inverted_index":{"In":[0],"this":[1],"paper,":[2],"we":[3],"propose":[4],"a":[5,53,134],"framework":[6,47],"GP-MRF,":[7],"which":[8],"combines":[9],"Gaussian":[10],"processes":[11],"(GPs)":[12],"and":[13,36,128],"Markov":[14],"random":[15],"field":[16],"(MRF)":[17],"for":[18,61,137],"accurate":[19],"classification":[20,85,100,126,138,157],"of":[21,49,95,139,143,159],"hyperspectral":[22,111],"remote":[23],"sensing":[24],"image":[25],"(HSI)":[26],"data.":[27],"This":[28,46],"method":[29,153],"exploits":[30],"the":[31,75,80,84,90,117,146,156],"relationship":[32],"among":[33],"adjacent":[34],"pixels":[35],"integrates":[37],"it":[38],"into":[39],"spectral":[40],"information":[41,73],"to":[42,69],"obtain":[43],"spectral-spatial":[44,91],"classification.":[45],"consists":[48],"two":[50],"steps.":[51],"Firstly,":[52],"GP":[54,131],"classifier":[55],"(GPC)":[56],"yields":[57],"pixelwise":[58],"predictive":[59],"probability":[60],"each":[62],"class.":[63],"Secondly,":[64],"an":[65,98],"MRF":[66,96],"is":[67,133],"applied":[68],"extract":[70],"spatial":[71],"contextual":[72],"in":[74,79,141],"label":[76],"map":[77],"achieved":[78],"first":[81],"step.":[82],"Then":[83],"results":[86,115,148],"are":[87,107,119],"inferred":[88],"from":[89,116],"information.":[92],"By":[93],"means":[94],"regularization":[97],"enhanced":[99],"result":[101],"has":[102],"been":[103],"obtained.":[104],"The":[105,114],"experiments":[106],"performed":[108],"on":[109],"three":[110],"benchmark":[112],"datasets.":[113],"GPC":[118],"compared":[120],"with":[121],"those":[122],"obtained":[123],"by":[124],"state-of-the-art":[125],"approaches":[127],"demonstrate":[129],"that,":[130],"model":[132],"competitive":[135],"tool":[136],"HSI":[140],"terms":[142],"accuracy.":[144],"Furthermore,":[145],"experimental":[147],"indicate":[149],"that":[150],"our":[151],"proposed":[152],"GP-MRF":[154],"improves":[155],"accuracy":[158],"conventional":[160],"GPC.":[161]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W1564111327","counts_by_year":[{"year":2020,"cited_by_count":1},{"year":2017,"cited_by_count":1},{"year":2016,"cited_by_count":2},{"year":2015,"cited_by_count":1}],"updated_date":"2024-12-11T02:25:41.287394","created_date":"2016-06-24"}