{"id":"https://openalex.org/W2897910204","doi":"https://doi.org/10.1109/jstsp.2018.2876995","title":"Recurrent Variational Autoencoders for Learning Nonlinear Generative Models in the Presence of Outliers","display_name":"Recurrent Variational Autoencoders for Learning Nonlinear Generative Models in the Presence of Outliers","publication_year":2018,"publication_date":"2018-10-19","ids":{"openalex":"https://openalex.org/W2897910204","doi":"https://doi.org/10.1109/jstsp.2018.2876995","mag":"2897910204"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/jstsp.2018.2876995","pdf_url":null,"source":{"id":"https://openalex.org/S42167783","display_name":"IEEE Journal of Selected Topics in Signal Processing","issn_l":"1932-4553","issn":["1932-4553","1941-0484"],"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310319808","host_organization_name":"Institute of Electrical and Electronics Engineers","host_organization_lineage":["https://openalex.org/P4310319808"],"host_organization_lineage_names":["Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"journal-article","indexed_in":["crossref"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://www.repository.cam.ac.uk/bitstreams/0e048c77-c16c-4741-93d5-a7bc10573480/download","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5100445377","display_name":"Yu Wang","orcid":"https://orcid.org/0000-0003-4219-781X"},"institutions":[{"id":"https://openalex.org/I241749","display_name":"University of Cambridge","ror":"https://ror.org/013meh722","country_code":"GB","type":"funder","lineage":["https://openalex.org/I241749"]}],"countries":["GB"],"is_corresponding":false,"raw_author_name":"Yu Wang","raw_affiliation_strings":["University of Cambridge, Cambridge, Cambridgeshire, GB"],"affiliations":[{"raw_affiliation_string":"University of Cambridge, Cambridge, Cambridgeshire, GB","institution_ids":["https://openalex.org/I241749"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5101437758","display_name":"Bin Dai","orcid":"https://orcid.org/0000-0003-0621-3544"},"institutions":[{"id":"https://openalex.org/I99065089","display_name":"Tsinghua University","ror":"https://ror.org/03cve4549","country_code":"CN","type":"funder","lineage":["https://openalex.org/I99065089"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Bin Dai","raw_affiliation_strings":["Tsinghua University, Beijing, Beijing, CN"],"affiliations":[{"raw_affiliation_string":"Tsinghua University, Beijing, Beijing, CN","institution_ids":["https://openalex.org/I99065089"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5081114810","display_name":"Gang Hua","orcid":"https://orcid.org/0000-0001-9522-6157"},"institutions":[{"id":"https://openalex.org/I1290206253","display_name":"Microsoft (United States)","ror":"https://ror.org/00d0nc645","country_code":"US","type":"funder","lineage":["https://openalex.org/I1290206253"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Gang Hua","raw_affiliation_strings":["Microsoft Research, Redmond, WA, US"],"affiliations":[{"raw_affiliation_string":"Microsoft Research, Redmond, WA, US","institution_ids":["https://openalex.org/I1290206253"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5089035453","display_name":"John A. D. Aston","orcid":"https://orcid.org/0000-0002-3770-9342"},"institutions":[{"id":"https://openalex.org/I241749","display_name":"University of Cambridge","ror":"https://ror.org/013meh722","country_code":"GB","type":"funder","lineage":["https://openalex.org/I241749"]}],"countries":["GB"],"is_corresponding":false,"raw_author_name":"John Aston","raw_affiliation_strings":["University of Cambridge, Cambridge, Cambridgeshire, GB"],"affiliations":[{"raw_affiliation_string":"University of Cambridge, Cambridge, Cambridgeshire, GB","institution_ids":["https://openalex.org/I241749"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5085016531","display_name":"David Wipf","orcid":"https://orcid.org/0000-0002-2768-4540"},"institutions":[{"id":"https://openalex.org/I1290206253","display_name":"Microsoft (United States)","ror":"https://ror.org/00d0nc645","country_code":"US","type":"funder","lineage":["https://openalex.org/I1290206253"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"David Wipf","raw_affiliation_strings":["Microsoft Research, Redmond, WA, US"],"affiliations":[{"raw_affiliation_string":"Microsoft Research, Redmond, WA, US","institution_ids":["https://openalex.org/I1290206253"]}]}],"institution_assertions":[],"countries_distinct_count":3,"institutions_distinct_count":3,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":1.207,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":18,"citation_normalized_percentile":{"value":0.99994,"is_in_top_1_percent":true,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":89,"max":90},"biblio":{"volume":"12","issue":"6","first_page":"1615","last_page":"1627"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10775","display_name":"Generative Adversarial Networks and Image Synthesis","score":0.9991,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10775","display_name":"Generative Adversarial Networks and Image Synthesis","score":0.9991,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10812","display_name":"Human Pose and Action Recognition","score":0.9882,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11206","display_name":"Model Reduction and Neural Networks","score":0.988,"subfield":{"id":"https://openalex.org/subfields/3109","display_name":"Statistical and Nonlinear Physics"},"field":{"id":"https://openalex.org/fields/31","display_name":"Physics and Astronomy"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/autoencoder","display_name":"Autoencoder","score":0.82695705},{"id":"https://openalex.org/keywords/generative-model","display_name":"Generative model","score":0.71202826},{"id":"https://openalex.org/keywords/robustness","display_name":"Robustness","score":0.70751816}],"concepts":[{"id":"https://openalex.org/C101738243","wikidata":"https://www.wikidata.org/wiki/Q786435","display_name":"Autoencoder","level":3,"score":0.82695705},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.76651835},{"id":"https://openalex.org/C79337645","wikidata":"https://www.wikidata.org/wiki/Q779824","display_name":"Outlier","level":2,"score":0.74286646},{"id":"https://openalex.org/C39890363","wikidata":"https://www.wikidata.org/wiki/Q36108","display_name":"Generative grammar","level":2,"score":0.7363173},{"id":"https://openalex.org/C167966045","wikidata":"https://www.wikidata.org/wiki/Q5532625","display_name":"Generative model","level":3,"score":0.71202826},{"id":"https://openalex.org/C63479239","wikidata":"https://www.wikidata.org/wiki/Q7353546","display_name":"Robustness (evolution)","level":3,"score":0.70751816},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.66859037},{"id":"https://openalex.org/C158622935","wikidata":"https://www.wikidata.org/wiki/Q660848","display_name":"Nonlinear system","level":2,"score":0.5584408},{"id":"https://openalex.org/C49937458","wikidata":"https://www.wikidata.org/wiki/Q2599292","display_name":"Probabilistic logic","level":2,"score":0.53703356},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.4626338},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.41277218},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.3560123},{"id":"https://openalex.org/C108583219","wikidata":"https://www.wikidata.org/wiki/Q197536","display_name":"Deep learning","level":2,"score":0.34955683},{"id":"https://openalex.org/C55493867","wikidata":"https://www.wikidata.org/wiki/Q7094","display_name":"Biochemistry","level":1,"score":0.0},{"id":"https://openalex.org/C185592680","wikidata":"https://www.wikidata.org/wiki/Q2329","display_name":"Chemistry","level":0,"score":0.0},{"id":"https://openalex.org/C62520636","wikidata":"https://www.wikidata.org/wiki/Q944","display_name":"Quantum mechanics","level":1,"score":0.0},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C104317684","wikidata":"https://www.wikidata.org/wiki/Q7187","display_name":"Gene","level":2,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/jstsp.2018.2876995","pdf_url":null,"source":{"id":"https://openalex.org/S42167783","display_name":"IEEE Journal of Selected Topics in Signal Processing","issn_l":"1932-4553","issn":["1932-4553","1941-0484"],"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310319808","host_organization_name":"Institute of Electrical and Electronics Engineers","host_organization_lineage":["https://openalex.org/P4310319808"],"host_organization_lineage_names":["Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"https://www.repository.cam.ac.uk/handle/1810/286783","pdf_url":"https://www.repository.cam.ac.uk/bitstreams/0e048c77-c16c-4741-93d5-a7bc10573480/download","source":{"id":"https://openalex.org/S4306401776","display_name":"Apollo (University of Cambridge)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I241749","host_organization_name":"University of Cambridge","host_organization_lineage":["https://openalex.org/I241749"],"host_organization_lineage_names":["University of Cambridge"],"type":"repository"},"license":"mit","license_id":"https://openalex.org/licenses/mit","version":"submittedVersion","is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://www.repository.cam.ac.uk/handle/1810/286783","pdf_url":"https://www.repository.cam.ac.uk/bitstreams/0e048c77-c16c-4741-93d5-a7bc10573480/download","source":{"id":"https://openalex.org/S4306401776","display_name":"Apollo (University of Cambridge)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I241749","host_organization_name":"University of Cambridge","host_organization_lineage":["https://openalex.org/I241749"],"host_organization_lineage_names":["University of Cambridge"],"type":"repository"},"license":"mit","license_id":"https://openalex.org/licenses/mit","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":39,"referenced_works":["https://openalex.org/W1516111018","https://openalex.org/W1691728462","https://openalex.org/W1831449718","https://openalex.org/W1909320841","https://openalex.org/W1959608418","https://openalex.org/W1974879849","https://openalex.org/W1988520084","https://openalex.org/W1993962865","https://openalex.org/W2017257315","https://openalex.org/W2100495367","https://openalex.org/W2107861471","https://openalex.org/W2112796928","https://openalex.org/W2116861100","https://openalex.org/W2136870201","https://openalex.org/W2145962650","https://openalex.org/W2161765392","https://openalex.org/W2166221887","https://openalex.org/W2168894214","https://openalex.org/W2188365844","https://openalex.org/W2204904589","https://openalex.org/W2346728112","https://openalex.org/W2467604901","https://openalex.org/W2470142083","https://openalex.org/W2622563070","https://openalex.org/W2624699774","https://openalex.org/W2772176451","https://openalex.org/W2899379230","https://openalex.org/W2950794910","https://openalex.org/W2962897886","https://openalex.org/W2963049629","https://openalex.org/W2963371269","https://openalex.org/W2963606038","https://openalex.org/W2963775850","https://openalex.org/W3093116395","https://openalex.org/W3105071468","https://openalex.org/W4248173958","https://openalex.org/W4250589301","https://openalex.org/W4297801963","https://openalex.org/W4391602018"],"related_works":["https://openalex.org/W4387506531","https://openalex.org/W4380551139","https://openalex.org/W4365211920","https://openalex.org/W3174044702","https://openalex.org/W3034474024","https://openalex.org/W3014948380","https://openalex.org/W2965095304","https://openalex.org/W2953501176","https://openalex.org/W2470043383","https://openalex.org/W2280377497"],"abstract_inverted_index":{"This":[0],"paper":[1],"explores":[2],"two":[3],"useful":[4],"modifications":[5],"of":[6,31],"the":[7,38,79,82,94,123],"recent":[8],"variational":[9],"autoencoder":[10],"(VAE),":[11],"a":[12,28,49,52,68,86,108],"popular":[13],"deep":[14],"generative":[15,88,140],"modeling":[16,141],"framework":[17],"that":[18,33,72,81],"dresses":[19],"traditional":[20],"autoencoders":[21],"with":[22],"probabilistic":[23],"attire.":[24],"The":[25],"first":[26],"involves":[27],"specially-tailored":[29],"form":[30],"conditioning":[32],"allows":[34],"us":[35],"to":[36,46,58,62,74,78,128],"simplify":[37],"VAE":[39,83],"decoder":[40,95],"structure":[41],"while":[42],"simultaneously":[43],"introducing":[44],"robustness":[45],"outliers.":[47],"In":[48,76],"related":[50],"vein,":[51],"second,":[53],"complementary":[54],"alteration":[55],"is":[56,84],"proposed":[57],"further":[59],"build":[60],"invariance":[61],"contaminated":[63],"or":[64],"dirty":[65],"samples":[66],"via":[67,118],"data":[69],"augmentation":[70],"process":[71],"amounts":[73],"recycling.":[75],"brief,":[77],"extent":[80],"legitimately":[85],"representative":[87],"model,":[89],"then":[90,104],"each":[91],"output":[92],"from":[93],"should":[96],"closely":[97],"resemble":[98],"an":[99],"authentic":[100],"sample,":[101],"which":[102],"can":[103,115],"be":[105,116,129],"resubmitted":[106],"as":[107],"novel":[109],"input":[110],"ad":[111],"infinitum.":[112],"Moreover,":[113],"this":[114],"accomplished":[117],"special":[119],"recurrent":[120],"connections":[121],"without":[122],"need":[124],"for":[125],"additional":[126],"parameters":[127],"trained.":[130],"We":[131],"evaluate":[132],"these":[133],"proposals":[134],"on":[135],"multiple":[136],"practical":[137],"outlier-removal":[138],"and":[139],"tasks":[142],"involving":[143],"nonlinear":[144],"low-dimensional":[145],"manifolds,":[146],"demonstrating":[147],"considerable":[148],"improvements":[149],"over":[150],"existing":[151],"algorithms.":[152]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2897910204","counts_by_year":[{"year":2025,"cited_by_count":2},{"year":2024,"cited_by_count":2},{"year":2023,"cited_by_count":2},{"year":2022,"cited_by_count":2},{"year":2021,"cited_by_count":4},{"year":2020,"cited_by_count":1},{"year":2019,"cited_by_count":3},{"year":2018,"cited_by_count":2}],"updated_date":"2025-03-29T08:34:43.325464","created_date":"2018-10-26"}