{"id":"https://openalex.org/W4367281371","doi":"https://doi.org/10.1109/jstars.2023.3268177","title":"Reg-Superpixel Guided Convolutional Neural Network of PolSAR Image Classification Based on Feature Selection and Receptive Field Reconstruction","display_name":"Reg-Superpixel Guided Convolutional Neural Network of PolSAR Image Classification Based on Feature Selection and Receptive Field Reconstruction","publication_year":2023,"publication_date":"2023-01-01","ids":{"openalex":"https://openalex.org/W4367281371","doi":"https://doi.org/10.1109/jstars.2023.3268177"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1109/jstars.2023.3268177","pdf_url":"https://ieeexplore.ieee.org/ielx7/4609443/9973430/10110373.pdf","source":{"id":"https://openalex.org/S117727964","display_name":"IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing","issn_l":"1939-1404","issn":["1939-1404","2151-1535"],"is_oa":true,"is_in_doaj":true,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310319808","host_organization_name":"Institute of Electrical and Electronics Engineers","host_organization_lineage":["https://openalex.org/P4310319808"],"host_organization_lineage_names":["Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":"cc-by-nc-nd","license_id":"https://openalex.org/licenses/cc-by-nc-nd","version":"publishedVersion","is_accepted":true,"is_published":true},"type":"article","type_crossref":"journal-article","indexed_in":["crossref"],"open_access":{"is_oa":true,"oa_status":"gold","oa_url":"https://ieeexplore.ieee.org/ielx7/4609443/9973430/10110373.pdf","any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5054791684","display_name":"Ronghua Shang","orcid":"https://orcid.org/0000-0001-9124-696X"},"institutions":[{"id":"https://openalex.org/I149594827","display_name":"Xidian University","ror":"https://ror.org/05s92vm98","country_code":"CN","type":"funder","lineage":["https://openalex.org/I149594827"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Ronghua Shang","raw_affiliation_strings":["Key Laboratory of Intelligent Perception and Image Understanding of Ministry of Education, School of Artificial Intelligence, Xidian University, Xi'an, China"],"affiliations":[{"raw_affiliation_string":"Key Laboratory of Intelligent Perception and Image Understanding of Ministry of Education, School of Artificial Intelligence, Xidian University, Xi'an, China","institution_ids":["https://openalex.org/I149594827"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5101773233","display_name":"Keyao Zhu","orcid":"https://orcid.org/0000-0002-7219-3695"},"institutions":[{"id":"https://openalex.org/I149594827","display_name":"Xidian University","ror":"https://ror.org/05s92vm98","country_code":"CN","type":"funder","lineage":["https://openalex.org/I149594827"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Keyao Zhu","raw_affiliation_strings":["Key Laboratory of Intelligent Perception and Image Understanding of Ministry of Education, School of Artificial Intelligence, Xidian University, Xi'an, China"],"affiliations":[{"raw_affiliation_string":"Key Laboratory of Intelligent Perception and Image Understanding of Ministry of Education, School of Artificial Intelligence, Xidian University, Xi'an, China","institution_ids":["https://openalex.org/I149594827"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5101709392","display_name":"Jie Feng","orcid":"https://orcid.org/0000-0002-5474-3286"},"institutions":[{"id":"https://openalex.org/I149594827","display_name":"Xidian University","ror":"https://ror.org/05s92vm98","country_code":"CN","type":"funder","lineage":["https://openalex.org/I149594827"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Jie Feng","raw_affiliation_strings":["Key Laboratory of Intelligent Perception and Image Understanding of Ministry of Education, School of Artificial Intelligence, Xidian University, Xi'an, China"],"affiliations":[{"raw_affiliation_string":"Key Laboratory of Intelligent Perception and Image Understanding of Ministry of Education, School of Artificial Intelligence, Xidian University, Xi'an, China","institution_ids":["https://openalex.org/I149594827"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100406892","display_name":"Chao Wang","orcid":"https://orcid.org/0000-0001-7578-1970"},"institutions":[{"id":"https://openalex.org/I4210123185","display_name":"Zhejiang Lab","ror":"https://ror.org/02m2h7991","country_code":"CN","type":"facility","lineage":["https://openalex.org/I4210123185"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Chao Wang","raw_affiliation_strings":["Research Center for Big Data Intelligence, Zhejiang Laboratory, Hangzhou, China"],"affiliations":[{"raw_affiliation_string":"Research Center for Big Data Intelligence, Zhejiang Laboratory, Hangzhou, China","institution_ids":["https://openalex.org/I4210123185"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5050630882","display_name":"Licheng Jiao","orcid":"https://orcid.org/0000-0003-3354-9617"},"institutions":[{"id":"https://openalex.org/I149594827","display_name":"Xidian University","ror":"https://ror.org/05s92vm98","country_code":"CN","type":"funder","lineage":["https://openalex.org/I149594827"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Licheng Jiao","raw_affiliation_strings":["Key Laboratory of Intelligent Perception and Image Understanding of Ministry of Education, School of Artificial Intelligence, Xidian University, Xi'an, China"],"affiliations":[{"raw_affiliation_string":"Key Laboratory of Intelligent Perception and Image Understanding of Ministry of Education, School of Artificial Intelligence, Xidian University, Xi'an, China","institution_ids":["https://openalex.org/I149594827"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5046202286","display_name":"Songhua Xu","orcid":"https://orcid.org/0000-0002-2276-2538"},"institutions":[{"id":"https://openalex.org/I4210131893","display_name":"Second Affiliated Hospital of Xi'an Jiaotong University","ror":"https://ror.org/03aq7kf18","country_code":"CN","type":"healthcare","lineage":["https://openalex.org/I4210131893"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Songhua Xu","raw_affiliation_strings":["Institute of Medical Artiffcial Intelligence, The Second Afffliated Hospital of Xi'an Jiaotong University, Xi'an, China"],"affiliations":[{"raw_affiliation_string":"Institute of Medical Artiffcial Intelligence, The Second Afffliated Hospital of Xi'an Jiaotong University, Xi'an, China","institution_ids":["https://openalex.org/I4210131893"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":3,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":{"value":1250,"currency":"USD","value_usd":1250},"apc_paid":{"value":1250,"currency":"USD","value_usd":1250},"fwci":1.671,"has_fulltext":false,"cited_by_count":5,"citation_normalized_percentile":{"value":0.766468,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":88,"max":90},"biblio":{"volume":"16","issue":null,"first_page":"4312","last_page":"4327"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10801","display_name":"Synthetic Aperture Radar (SAR) Applications and Techniques","score":1.0,"subfield":{"id":"https://openalex.org/subfields/2202","display_name":"Aerospace Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10801","display_name":"Synthetic Aperture Radar (SAR) Applications and Techniques","score":1.0,"subfield":{"id":"https://openalex.org/subfields/2202","display_name":"Aerospace Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11038","display_name":"Advanced SAR Imaging Techniques","score":0.9997,"subfield":{"id":"https://openalex.org/subfields/2202","display_name":"Aerospace Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11698","display_name":"Underwater Acoustics Research","score":0.9894,"subfield":{"id":"https://openalex.org/subfields/1910","display_name":"Oceanography"},"field":{"id":"https://openalex.org/fields/19","display_name":"Earth and Planetary Sciences"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/feature","display_name":"Feature (linguistics)","score":0.5624781},{"id":"https://openalex.org/keywords/overfitting","display_name":"Overfitting","score":0.52877605},{"id":"https://openalex.org/keywords/contextual-image-classification","display_name":"Contextual image classification","score":0.4200347}],"concepts":[{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.7814969},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.77994907},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.72144127},{"id":"https://openalex.org/C81363708","wikidata":"https://www.wikidata.org/wiki/Q17084460","display_name":"Convolutional neural network","level":2,"score":0.6746771},{"id":"https://openalex.org/C2776401178","wikidata":"https://www.wikidata.org/wiki/Q12050496","display_name":"Feature (linguistics)","level":2,"score":0.5624781},{"id":"https://openalex.org/C52622490","wikidata":"https://www.wikidata.org/wiki/Q1026626","display_name":"Feature extraction","level":2,"score":0.5457092},{"id":"https://openalex.org/C160633673","wikidata":"https://www.wikidata.org/wiki/Q355198","display_name":"Pixel","level":2,"score":0.54197943},{"id":"https://openalex.org/C22019652","wikidata":"https://www.wikidata.org/wiki/Q331309","display_name":"Overfitting","level":3,"score":0.52877605},{"id":"https://openalex.org/C19071747","wikidata":"https://www.wikidata.org/wiki/Q1755207","display_name":"Receptive field","level":2,"score":0.4848834},{"id":"https://openalex.org/C148483581","wikidata":"https://www.wikidata.org/wiki/Q446488","display_name":"Feature selection","level":2,"score":0.47243175},{"id":"https://openalex.org/C9652623","wikidata":"https://www.wikidata.org/wiki/Q190109","display_name":"Field (mathematics)","level":2,"score":0.43009523},{"id":"https://openalex.org/C75294576","wikidata":"https://www.wikidata.org/wiki/Q5165192","display_name":"Contextual image classification","level":3,"score":0.4200347},{"id":"https://openalex.org/C31972630","wikidata":"https://www.wikidata.org/wiki/Q844240","display_name":"Computer vision","level":1,"score":0.40441257},{"id":"https://openalex.org/C115961682","wikidata":"https://www.wikidata.org/wiki/Q860623","display_name":"Image (mathematics)","level":2,"score":0.33363593},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.28306416},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.1957035},{"id":"https://openalex.org/C138885662","wikidata":"https://www.wikidata.org/wiki/Q5891","display_name":"Philosophy","level":0,"score":0.0},{"id":"https://openalex.org/C41895202","wikidata":"https://www.wikidata.org/wiki/Q8162","display_name":"Linguistics","level":1,"score":0.0},{"id":"https://openalex.org/C202444582","wikidata":"https://www.wikidata.org/wiki/Q837863","display_name":"Pure mathematics","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":true,"landing_page_url":"https://doi.org/10.1109/jstars.2023.3268177","pdf_url":"https://ieeexplore.ieee.org/ielx7/4609443/9973430/10110373.pdf","source":{"id":"https://openalex.org/S117727964","display_name":"IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing","issn_l":"1939-1404","issn":["1939-1404","2151-1535"],"is_oa":true,"is_in_doaj":true,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310319808","host_organization_name":"Institute of Electrical and Electronics Engineers","host_organization_lineage":["https://openalex.org/P4310319808"],"host_organization_lineage_names":["Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":"cc-by-nc-nd","license_id":"https://openalex.org/licenses/cc-by-nc-nd","version":"publishedVersion","is_accepted":true,"is_published":true}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1109/jstars.2023.3268177","pdf_url":"https://ieeexplore.ieee.org/ielx7/4609443/9973430/10110373.pdf","source":{"id":"https://openalex.org/S117727964","display_name":"IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing","issn_l":"1939-1404","issn":["1939-1404","2151-1535"],"is_oa":true,"is_in_doaj":true,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310319808","host_organization_name":"Institute of Electrical and Electronics Engineers","host_organization_lineage":["https://openalex.org/P4310319808"],"host_organization_lineage_names":["Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":"cc-by-nc-nd","license_id":"https://openalex.org/licenses/cc-by-nc-nd","version":"publishedVersion","is_accepted":true,"is_published":true},"sustainable_development_goals":[{"score":0.52,"display_name":"Zero hunger","id":"https://metadata.un.org/sdg/2"},{"score":0.46,"display_name":"Climate action","id":"https://metadata.un.org/sdg/13"}],"grants":[{"funder":"https://openalex.org/F4320321001","funder_display_name":"National Natural Science Foundation of China","award_id":"62176200"},{"funder":"https://openalex.org/F4320321001","funder_display_name":"National Natural Science Foundation of China","award_id":"62271374"},{"funder":"https://openalex.org/F4320335787","funder_display_name":"Fundamental Research Funds for the Central Universities","award_id":"XJS221903"},{"funder":"https://openalex.org/F4320337111","funder_display_name":"Basic and Applied Basic Research Foundation of Guangdong Province","award_id":"2021A1515110686"}],"datasets":[],"versions":[],"referenced_works_count":34,"referenced_works":["https://openalex.org/W1421632428","https://openalex.org/W1602107991","https://openalex.org/W1969674753","https://openalex.org/W2002466026","https://openalex.org/W2005232609","https://openalex.org/W2037095848","https://openalex.org/W2080563694","https://openalex.org/W2086623418","https://openalex.org/W2133989913","https://openalex.org/W2141424348","https://openalex.org/W2146873040","https://openalex.org/W2559324447","https://openalex.org/W2738554810","https://openalex.org/W2754361766","https://openalex.org/W2791890028","https://openalex.org/W2792794215","https://openalex.org/W2894214161","https://openalex.org/W2963446712","https://openalex.org/W2963943821","https://openalex.org/W2996681220","https://openalex.org/W3002750555","https://openalex.org/W3003805783","https://openalex.org/W3025076003","https://openalex.org/W3030342502","https://openalex.org/W3096113601","https://openalex.org/W3111112559","https://openalex.org/W3165071532","https://openalex.org/W3207858782","https://openalex.org/W3211987569","https://openalex.org/W3215875580","https://openalex.org/W3216960684","https://openalex.org/W4214742436","https://openalex.org/W4297775537","https://openalex.org/W4312493670"],"related_works":["https://openalex.org/W4362597605","https://openalex.org/W4297676672","https://openalex.org/W4281702477","https://openalex.org/W3155717344","https://openalex.org/W3128011703","https://openalex.org/W3009056573","https://openalex.org/W2922073769","https://openalex.org/W2565656575","https://openalex.org/W1770458422","https://openalex.org/W1574414179"],"abstract_inverted_index":{"The":[0,118],"convolutional":[1],"neural":[2],"network":[3,141,198],"(CNN)":[4],"has":[5],"a":[6,46,59],"poor":[7],"performance":[8],"in":[9],"nonuniform":[10],"and":[11,34,54,75,77,110,153,175,195],"edge":[12,147,177],"regions":[13],"due":[14],"to":[15,36,72,83,85,105,127,142,160],"the":[16,23,37,87,97,107,112,115,122,128,132,138,150,157,165,168],"limitation":[17],"of":[18,28,90,114,121,149,156,164],"fixed":[19],"receptive":[20,55,108,162],"field.":[21],"At":[22],"same":[24],"time,":[25],"feature":[26,52,60,193],"stacking":[27],"input":[29],"data":[30],"can":[31,136,179],"bring":[32],"burden":[33],"overfitting":[35],"network.":[38],"To":[39],"solve":[40],"these":[41],"problems,":[42],"this":[43],"article":[44],"proposes":[45],"reg-superpixel":[47,197],"guided":[48],"CNN":[49,140],"based":[50],"on":[51,94,188],"selection":[53,61,194],"field":[56,109,163],"reconstruction.":[57],"First,":[58],"method":[62,135],"is":[63,103,125,199],"designed,":[64],"which":[65,99],"uses":[66],"polarimetric":[67,202],"SAR":[68,203],"statistical":[69],"distribution":[70],"features":[71,79,93,113],"calculate":[73],"distance":[74],"similarity,":[76],"selects":[78],"that":[80,192],"are":[81],"easier":[82],"identify":[84],"avoid":[86],"negative":[88],"impact":[89],"low":[91],"distinguishing":[92],"classification.":[95],"Second,":[96],"reg-superpixel,":[98],"means":[100],"regular":[101],"superpixel,":[102],"used":[104],"reconstruct":[106],"represent":[111],"central":[116,123,166],"pixel.":[117],"classification":[119,169,204],"result":[120],"pixel":[124],"extended":[126],"whole":[129],"superpixel":[130,152,159],"during":[131],"test.":[133],"This":[134],"extend":[137],"pixel-level":[139],"superpixel-level.":[143],"Finally,":[144],"by":[145],"using":[146],"information":[148,155],"small-scale":[151],"spatial":[154],"large-scale":[158],"adjust":[161],"pixel,":[167],"results":[170,183],"with":[171,184],"uniform":[172],"smooth":[173],"region":[174],"high":[176],"fitting":[178],"be":[180],"generated.":[181],"Experimental":[182],"four":[185,189],"state-of-the-art":[186],"methods":[187],"datasets":[190],"show":[191],"multiscale":[196],"effective":[200],"for":[201],"problems.":[205]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4367281371","counts_by_year":[{"year":2025,"cited_by_count":2},{"year":2024,"cited_by_count":3}],"updated_date":"2025-04-27T08:58:24.900888","created_date":"2023-04-29"}