{"id":"https://openalex.org/W4313477457","doi":"https://doi.org/10.1109/jbhi.2022.3233486","title":"Deep Multitask Learning by Stacked Long Short-Term Memory for Predicting Personalized Blood Glucose Concentration","display_name":"Deep Multitask Learning by Stacked Long Short-Term Memory for Predicting Personalized Blood Glucose Concentration","publication_year":2023,"publication_date":"2023-01-02","ids":{"openalex":"https://openalex.org/W4313477457","doi":"https://doi.org/10.1109/jbhi.2022.3233486","pmid":"https://pubmed.ncbi.nlm.nih.gov/37018303"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/jbhi.2022.3233486","pdf_url":null,"source":{"id":"https://openalex.org/S2495854775","display_name":"IEEE Journal of Biomedical and Health Informatics","issn_l":"2168-2194","issn":["2168-2194","2168-2208"],"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310319808","host_organization_name":"Institute of Electrical and Electronics Engineers","host_organization_lineage":["https://openalex.org/P4310319808"],"host_organization_lineage_names":["Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"journal-article","indexed_in":["crossref","pubmed"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5053479977","display_name":"Md Maruf Hossain Shuvo","orcid":"https://orcid.org/0000-0002-3498-4947"},"institutions":[{"id":"https://openalex.org/I76835614","display_name":"University of Missouri","ror":"https://ror.org/02ymw8z06","country_code":"US","type":"funder","lineage":["https://openalex.org/I76835614"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Md Maruf Hossain Shuvo","raw_affiliation_strings":["Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO, USA"],"affiliations":[{"raw_affiliation_string":"Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO, USA","institution_ids":["https://openalex.org/I76835614"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5062878427","display_name":"Syed K. Islam","orcid":"https://orcid.org/0000-0002-0501-0027"},"institutions":[{"id":"https://openalex.org/I76835614","display_name":"University of Missouri","ror":"https://ror.org/02ymw8z06","country_code":"US","type":"funder","lineage":["https://openalex.org/I76835614"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Syed Kamrul Islam","raw_affiliation_strings":["Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO, USA"],"affiliations":[{"raw_affiliation_string":"Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO, USA","institution_ids":["https://openalex.org/I76835614"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":8.699,"has_fulltext":false,"cited_by_count":20,"citation_normalized_percentile":{"value":0.834706,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":97,"max":98},"biblio":{"volume":"27","issue":"3","first_page":"1612","last_page":"1623"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10560","display_name":"Diabetes Management and Research","score":0.9978,"subfield":{"id":"https://openalex.org/subfields/2712","display_name":"Endocrinology, Diabetes and Metabolism"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}},"topics":[{"id":"https://openalex.org/T10560","display_name":"Diabetes Management and Research","score":0.9978,"subfield":{"id":"https://openalex.org/subfields/2712","display_name":"Endocrinology, Diabetes and Metabolism"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}},{"id":"https://openalex.org/T11396","display_name":"Artificial Intelligence in Healthcare","score":0.995,"subfield":{"id":"https://openalex.org/subfields/3605","display_name":"Health Information Management"},"field":{"id":"https://openalex.org/fields/36","display_name":"Health Professions"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}},{"id":"https://openalex.org/T13702","display_name":"Machine Learning in Healthcare","score":0.9833,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/robustness","display_name":"Robustness","score":0.45900366}],"concepts":[{"id":"https://openalex.org/C139945424","wikidata":"https://www.wikidata.org/wiki/Q1940696","display_name":"Mean squared error","level":2,"score":0.71594733},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.6491276},{"id":"https://openalex.org/C108583219","wikidata":"https://www.wikidata.org/wiki/Q197536","display_name":"Deep learning","level":2,"score":0.52434593},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.5120526},{"id":"https://openalex.org/C63479239","wikidata":"https://www.wikidata.org/wiki/Q7353546","display_name":"Robustness (evolution)","level":3,"score":0.45900366},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.4356973},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.33902067},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.29722548},{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.20212153},{"id":"https://openalex.org/C55493867","wikidata":"https://www.wikidata.org/wiki/Q7094","display_name":"Biochemistry","level":1,"score":0.0},{"id":"https://openalex.org/C185592680","wikidata":"https://www.wikidata.org/wiki/Q2329","display_name":"Chemistry","level":0,"score":0.0},{"id":"https://openalex.org/C104317684","wikidata":"https://www.wikidata.org/wiki/Q7187","display_name":"Gene","level":2,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/jbhi.2022.3233486","pdf_url":null,"source":{"id":"https://openalex.org/S2495854775","display_name":"IEEE Journal of Biomedical and Health Informatics","issn_l":"2168-2194","issn":["2168-2194","2168-2208"],"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310319808","host_organization_name":"Institute of Electrical and Electronics Engineers","host_organization_lineage":["https://openalex.org/P4310319808"],"host_organization_lineage_names":["Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://pubmed.ncbi.nlm.nih.gov/37018303","pdf_url":null,"source":{"id":"https://openalex.org/S4306525036","display_name":"PubMed","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I1299303238","host_organization_name":"National Institutes of Health","host_organization_lineage":["https://openalex.org/I1299303238"],"host_organization_lineage_names":["National Institutes of Health"],"type":"repository"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"score":0.49,"display_name":"Gender equality","id":"https://metadata.un.org/sdg/5"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":44,"referenced_works":["https://openalex.org/W1522301498","https://openalex.org/W1964947170","https://openalex.org/W1986495510","https://openalex.org/W2014887370","https://openalex.org/W2017693127","https://openalex.org/W2031534975","https://openalex.org/W2046853583","https://openalex.org/W2064675550","https://openalex.org/W2069143585","https://openalex.org/W2124918510","https://openalex.org/W2129995532","https://openalex.org/W2132228725","https://openalex.org/W2162557622","https://openalex.org/W2275538291","https://openalex.org/W2523526638","https://openalex.org/W2747023271","https://openalex.org/W2779582454","https://openalex.org/W2789847125","https://openalex.org/W2791411222","https://openalex.org/W2796139277","https://openalex.org/W2804281019","https://openalex.org/W2804354698","https://openalex.org/W2807352658","https://openalex.org/W2810149880","https://openalex.org/W2947919073","https://openalex.org/W2963123914","https://openalex.org/W2963922828","https://openalex.org/W2964335273","https://openalex.org/W2965097915","https://openalex.org/W2980234472","https://openalex.org/W2993720025","https://openalex.org/W3016173377","https://openalex.org/W3122074426","https://openalex.org/W3178157679","https://openalex.org/W3197187428","https://openalex.org/W36455107","https://openalex.org/W4205203504","https://openalex.org/W4225740406","https://openalex.org/W4239943352","https://openalex.org/W4254695749","https://openalex.org/W4254965081","https://openalex.org/W4289258409","https://openalex.org/W4312910656","https://openalex.org/W944776124"],"related_works":["https://openalex.org/W4380075502","https://openalex.org/W4375867731","https://openalex.org/W4281727072","https://openalex.org/W3154990682","https://openalex.org/W2770593030","https://openalex.org/W2611989081","https://openalex.org/W2560201613","https://openalex.org/W2314720829","https://openalex.org/W2171975302","https://openalex.org/W2102148524"],"abstract_inverted_index":{"The":[0,64,94],"adverse":[1],"glycemic":[2],"events":[3],"triggered":[4],"by":[5,237,260],"the":[6,36,83,104,108,111,129,137,143,173,178,230,234,246,256,263],"inaccurate":[7],"insulin":[8],"infusion":[9],"in":[10,35,42,107,123,245],"Type":[11],"I":[12],"diabetes":[13],"(T1D)":[14],"can":[15],"lead":[16],"to":[17,103,118,252],"fatal":[18],"complications.":[19],"Predicting":[20],"blood":[21,61],"glucose":[22,62,120],"concentration":[23],"(BGC)":[24],"based":[25],"on":[26],"clinical":[27,132,150,235],"health":[28],"records":[29],"is":[30,134,258],"critical":[31],"for":[32,59,136,187,250],"control":[33],"algorithms":[34],"artificial":[37],"pancreas":[38],"(AP)":[39],"and":[40,70,139,149,164,175,215,269],"aiding":[41],"medical":[43],"decision":[44],"support.":[45],"This":[46],"paper":[47],"presents":[48],"a":[49],"novel":[50],"deep":[51,270],"learning":[52,57,267,271],"(DL)":[53,272],"model":[54],"incorporating":[55],"multitask":[56],"(MTL)":[58],"personalized":[60,119],"prediction.":[63],"network":[65],"architecture":[66],"consists":[67],"of":[68,76,142,177],"shared":[69,84],"clustered":[71,95],"hidden":[72,85,96],"layers.":[73],"Two":[74],"layers":[75,86,97,101,114],"stacked":[77],"long":[78],"short-term":[79],"memory":[80],"(LSTM)":[81],"form":[82],"that":[87],"learn":[88],"generalized":[89],"features":[90],"from":[91],"all":[92],"subjects.":[93],"comprise":[98],"two":[99],"dense":[100,113],"adapting":[102],"gender-specific":[105],"variability":[106],"data.":[109],"Finally,":[110],"subject-specific":[112],"offer":[115],"additional":[116],"fine-tuning":[117],"dynamics":[121],"resulting":[122],"an":[124],"accurate":[125],"BGC":[126,243],"prediction":[127,225],"at":[128],"output.":[130],"OhioT1DM":[131],"dataset":[133],"used":[135],"training":[138],"performance":[140,183],"evaluation":[141],"proposed":[144,179],"model.":[145],"A":[146],"detailed":[147],"analytical":[148],"assessment":[151],"have":[152],"been":[153,185],"performed":[154],"using":[155],"root":[156],"mean":[157,160],"square":[158],"(RMSE),":[159],"absolute":[161],"error":[162,166],"(MAE),":[163],"Clarke":[165],"grid":[167],"analysis":[168,232],"(EGA),":[169],"respectively,":[170],"which":[171],"demonstrates":[172],"robustness":[174],"reliability":[176],"method.":[180],"Consistently":[181],"leading":[182],"has":[184],"achieved":[186],"30-":[188],"(RMSE":[189,198,207,217],"=":[190,194,199,203,208,212,218,222],"16.06":[191],"\u00b12.74,":[192],"MAE":[193,202,211,221],"10.64":[195],"\u00b11.35),":[196],"60-":[197],"30.89":[200],"\u00b14.31,":[201],"22.07":[204],"\u00b12.96),":[205],"90-":[206],"40.51":[209],"\u00b15.16,":[210],"30.16":[213],"\u00b14.10),":[214],"120-minute":[216,253],"47.39":[219],"\u00b15.62,":[220],"36.36":[223],"\u00b14.54)":[224],"horizon":[226],"(PH).":[227],"In":[228],"addition,":[229],"EGA":[231],"confirms":[233],"feasibility":[236],"maintaining":[238],"more":[239],"than":[240],"94":[241],"%":[242],"predictions":[244],"clinically":[247],"safe":[248],"zone":[249],"up":[251],"PH.":[254],"Moreover,":[255],"improvement":[257],"established":[259],"benchmarking":[261],"against":[262],"state-of-the-art":[264],"statistical,":[265],"machine":[266],"(ML),":[268],"methods.":[273]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4313477457","counts_by_year":[{"year":2024,"cited_by_count":14},{"year":2023,"cited_by_count":6}],"updated_date":"2025-03-19T17:14:34.763568","created_date":"2023-01-06"}