{"id":"https://openalex.org/W4307093169","doi":"https://doi.org/10.1109/jbhi.2022.3216293","title":"Semi-Supervised Pixel Contrastive Learning Framework for Tissue Segmentation in Histopathological Image","display_name":"Semi-Supervised Pixel Contrastive Learning Framework for Tissue Segmentation in Histopathological Image","publication_year":2022,"publication_date":"2022-11-03","ids":{"openalex":"https://openalex.org/W4307093169","doi":"https://doi.org/10.1109/jbhi.2022.3216293","pmid":"https://pubmed.ncbi.nlm.nih.gov/36269914"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/jbhi.2022.3216293","pdf_url":null,"source":{"id":"https://openalex.org/S2495854775","display_name":"IEEE Journal of Biomedical and Health Informatics","issn_l":"2168-2194","issn":["2168-2194","2168-2208"],"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310319808","host_organization_name":"Institute of Electrical and Electronics Engineers","host_organization_lineage":["https://openalex.org/P4310319808"],"host_organization_lineage_names":["Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"journal-article","indexed_in":["crossref","pubmed"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5068040819","display_name":"Jiangbo Shi","orcid":"https://orcid.org/0000-0003-0180-3086"},"institutions":[{"id":"https://openalex.org/I87445476","display_name":"Xi'an Jiaotong University","ror":"https://ror.org/017zhmm22","country_code":"CN","type":"funder","lineage":["https://openalex.org/I87445476"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Jiangbo Shi","raw_affiliation_strings":["National Engineering Lab for Big Data Analytics, School of Computer Science and Technology, Xi'an Jiaotong University, Xi'an, China"],"affiliations":[{"raw_affiliation_string":"National Engineering Lab for Big Data Analytics, School of Computer Science and Technology, Xi'an Jiaotong University, Xi'an, China","institution_ids":["https://openalex.org/I87445476"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5030762002","display_name":"Tieliang Gong","orcid":"https://orcid.org/0000-0002-3840-441X"},"institutions":[{"id":"https://openalex.org/I87445476","display_name":"Xi'an Jiaotong University","ror":"https://ror.org/017zhmm22","country_code":"CN","type":"funder","lineage":["https://openalex.org/I87445476"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Tieliang Gong","raw_affiliation_strings":["Key Laboratory of Intelligent Networks and Network Security, Ministry of Education, School of Computer Science and Technology, Xi'an Jiaotong University, Xi'an, China"],"affiliations":[{"raw_affiliation_string":"Key Laboratory of Intelligent Networks and Network Security, Ministry of Education, School of Computer Science and Technology, Xi'an Jiaotong University, Xi'an, China","institution_ids":["https://openalex.org/I87445476"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5065529317","display_name":"Chunbao Wang","orcid":"https://orcid.org/0000-0002-8795-0142"},"institutions":[{"id":"https://openalex.org/I87445476","display_name":"Xi'an Jiaotong University","ror":"https://ror.org/017zhmm22","country_code":"CN","type":"funder","lineage":["https://openalex.org/I87445476"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Chunbao Wang","raw_affiliation_strings":["Department of Pathology, Xi'an Jiaotong University, Xi'an, China"],"affiliations":[{"raw_affiliation_string":"Department of Pathology, Xi'an Jiaotong University, Xi'an, China","institution_ids":["https://openalex.org/I87445476"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5100369793","display_name":"Chen Li","orcid":"https://orcid.org/0000-0002-0079-3106"},"institutions":[{"id":"https://openalex.org/I87445476","display_name":"Xi'an Jiaotong University","ror":"https://ror.org/017zhmm22","country_code":"CN","type":"funder","lineage":["https://openalex.org/I87445476"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Chen Li","raw_affiliation_strings":["National Engineering Lab for Big Data Analytics, School of Computer Science and Technology, Xi'an Jiaotong University, Xi'an, China"],"affiliations":[{"raw_affiliation_string":"National Engineering Lab for Big Data Analytics, School of Computer Science and Technology, Xi'an Jiaotong University, Xi'an, China","institution_ids":["https://openalex.org/I87445476"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":2.951,"has_fulltext":false,"cited_by_count":21,"citation_normalized_percentile":{"value":0.803304,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":95,"max":96},"biblio":{"volume":"27","issue":"1","first_page":"97","last_page":"108"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10862","display_name":"AI in cancer detection","score":0.9996,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10862","display_name":"AI in cancer detection","score":0.9996,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12422","display_name":"Radiomics and Machine Learning in Medical Imaging","score":0.988,"subfield":{"id":"https://openalex.org/subfields/2741","display_name":"Radiology, Nuclear Medicine and Imaging"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}},{"id":"https://openalex.org/T14510","display_name":"Medical Imaging and Analysis","score":0.9858,"subfield":{"id":"https://openalex.org/subfields/2204","display_name":"Biomedical Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.8036132},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.7532478},{"id":"https://openalex.org/C89600930","wikidata":"https://www.wikidata.org/wiki/Q1423946","display_name":"Segmentation","level":2,"score":0.6560461},{"id":"https://openalex.org/C2776436953","wikidata":"https://www.wikidata.org/wiki/Q5163215","display_name":"Consistency (knowledge bases)","level":2,"score":0.6438602},{"id":"https://openalex.org/C160633673","wikidata":"https://www.wikidata.org/wiki/Q355198","display_name":"Pixel","level":2,"score":0.63763165},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.5361943},{"id":"https://openalex.org/C124504099","wikidata":"https://www.wikidata.org/wiki/Q56933","display_name":"Image segmentation","level":3,"score":0.49249634},{"id":"https://openalex.org/C25343380","wikidata":"https://www.wikidata.org/wiki/Q277521","display_name":"Relation (database)","level":2,"score":0.446087},{"id":"https://openalex.org/C31972630","wikidata":"https://www.wikidata.org/wiki/Q844240","display_name":"Computer vision","level":1,"score":0.41514474},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.19560519}],"mesh":[{"descriptor_ui":"D012660","descriptor_name":"Semantics","qualifier_ui":"","qualifier_name":null,"is_major_topic":true},{"descriptor_ui":"D000069553","descriptor_name":"Supervised Machine Learning","qualifier_ui":"","qualifier_name":null,"is_major_topic":true},{"descriptor_ui":"D006801","descriptor_name":"Humans","qualifier_ui":"","qualifier_name":null,"is_major_topic":false},{"descriptor_ui":"D007091","descriptor_name":"Image Processing, Computer-Assisted","qualifier_ui":"","qualifier_name":null,"is_major_topic":false}],"locations_count":2,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/jbhi.2022.3216293","pdf_url":null,"source":{"id":"https://openalex.org/S2495854775","display_name":"IEEE Journal of Biomedical and Health Informatics","issn_l":"2168-2194","issn":["2168-2194","2168-2208"],"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310319808","host_organization_name":"Institute of Electrical and Electronics Engineers","host_organization_lineage":["https://openalex.org/P4310319808"],"host_organization_lineage_names":["Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://pubmed.ncbi.nlm.nih.gov/36269914","pdf_url":null,"source":{"id":"https://openalex.org/S4306525036","display_name":"PubMed","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I1299303238","host_organization_name":"National Institutes of Health","host_organization_lineage":["https://openalex.org/I1299303238"],"host_organization_lineage_names":["National Institutes of Health"],"type":"repository"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[{"funder":"https://openalex.org/F4320312071","funder_display_name":"Ministry of Education, Libya","award_id":"IRT_17R86"},{"funder":"https://openalex.org/F4320321001","funder_display_name":"National Natural Science Foundation of China","award_id":"62106191"},{"funder":"https://openalex.org/F4320327609","funder_display_name":"China Knowledge Centre for Engineering Sciences and Technology","award_id":null},{"funder":"https://openalex.org/F4320327720","funder_display_name":"Foundation for Innovative Research Groups of the National Natural Science Foundation of China","award_id":"61721002"},{"funder":"https://openalex.org/F4320330193","funder_display_name":"Chinese Academy of Engineering","award_id":null}],"datasets":[],"versions":[],"referenced_works_count":51,"referenced_works":["https://openalex.org/W1861492603","https://openalex.org/W1901129140","https://openalex.org/W1987869189","https://openalex.org/W2032972527","https://openalex.org/W2126882378","https://openalex.org/W2138621090","https://openalex.org/W2163605009","https://openalex.org/W2194775991","https://openalex.org/W2237393532","https://openalex.org/W2401774705","https://openalex.org/W2412782625","https://openalex.org/W2432020924","https://openalex.org/W2630837129","https://openalex.org/W2668608389","https://openalex.org/W2789705845","https://openalex.org/W2805735218","https://openalex.org/W2921629474","https://openalex.org/W2922239620","https://openalex.org/W2963803174","https://openalex.org/W2979907638","https://openalex.org/W3005650525","https://openalex.org/W3035060554","https://openalex.org/W3045440354","https://openalex.org/W3049194333","https://openalex.org/W3081752372","https://openalex.org/W3093269975","https://openalex.org/W3095848620","https://openalex.org/W3107410755","https://openalex.org/W3113960880","https://openalex.org/W3122412340","https://openalex.org/W3153669878","https://openalex.org/W3166835754","https://openalex.org/W3167142517","https://openalex.org/W3168822201","https://openalex.org/W3171007011","https://openalex.org/W3171581326","https://openalex.org/W3171816794","https://openalex.org/W3172615411","https://openalex.org/W3195975500","https://openalex.org/W3203046931","https://openalex.org/W3204025806","https://openalex.org/W3206985657","https://openalex.org/W3207797062","https://openalex.org/W3208438885","https://openalex.org/W3212678216","https://openalex.org/W3214096168","https://openalex.org/W4220789240","https://openalex.org/W4221115899","https://openalex.org/W4226502176","https://openalex.org/W4287755086","https://openalex.org/W4312421335"],"related_works":["https://openalex.org/W4285411112","https://openalex.org/W4234874385","https://openalex.org/W3135697610","https://openalex.org/W2388988621","https://openalex.org/W2378782423","https://openalex.org/W2323648130","https://openalex.org/W2171299904","https://openalex.org/W2157140558","https://openalex.org/W2085033728","https://openalex.org/W1522196789"],"abstract_inverted_index":{"Accurate":[0],"tissue":[1,168],"segmentation":[2,169],"in":[3,182],"histopathological":[4,155],"images":[5,156],"is":[6,23],"essential":[7],"for":[8],"promoting":[9],"the":[10,16,19,39,45,49,102,124,135,142,151,159,172],"development":[11],"of":[12,18,48,128,137,162,174],"precision":[13],"pathology.":[14],"However,":[15],"size":[17],"digital":[20],"pathological":[21],"image":[22,76,130],"great,":[24],"which":[25,62,132,176],"needs":[26],"to":[27,180],"be":[28],"tiled":[29],"into":[30],"small":[31],"patches":[32],"containing":[33],"limited":[34],"semantic":[35,46,104],"information.":[36],"To":[37],"imitate":[38],"pathologist's":[40],"diagnosis":[41],"process":[42],"and":[43,73,93,140,157],"model":[44],"relation":[47],"whole":[50],"slide":[51],"image,":[52],"We":[53,114],"propose":[54,116],"a":[55,74,108],"semi-supervised":[56],"pixel":[57,112],"contrastive":[58,109],"learning":[59,70,78,86],"framework":[60],"(SSPCL)":[61],"mainly":[63],"includes":[64],"an":[65],"uncertainty-guided":[66],"mutual":[67,91],"dual":[68],"consistency":[69],"module":[71,79,83,98],"(UMDC)":[72],"cross":[75],"pixel-contrastive":[77],"(CIPC).":[80],"The":[81,96],"UMDC":[82],"enables":[84],"efficient":[85],"from":[87],"unlabeled":[88],"data":[89],"through":[90],"dual-consistency":[92],"consensus-based":[94],"uncertainty.":[95],"CIPC":[97],"aims":[99],"at":[100],"capturing":[101],"cross-patch":[103],"relationship":[105],"by":[106,122],"optimizing":[107],"loss":[110],"between":[111],"embeddings.":[113],"also":[115],"several":[117],"novel":[118],"domain-related":[119],"sampling":[120,139],"methods":[121],"utilizing":[123],"continuous":[125],"spatial":[126],"structure":[127],"adjacent":[129],"patches,":[131],"can":[133],"avoid":[134],"problem":[136],"false":[138],"improve":[141],"training":[143],"efficiency.":[144],"In":[145],"this":[146],"way,":[147],"SSPCL":[148],"significantly":[149],"reduces":[150],"labeling":[152],"cost":[153],"on":[154,166],"realizes":[158],"accurate":[160],"quantitation":[161],"tissues.":[163],"Extensive":[164],"experiments":[165],"three":[167],"datasets":[170],"demonstrate":[171],"effectiveness":[173],"SSPCL,":[175],"outperforms":[177],"state-of-the-art":[178],"up":[179],"5.0%":[181],"mDice.":[183]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4307093169","counts_by_year":[{"year":2025,"cited_by_count":2},{"year":2024,"cited_by_count":8},{"year":2023,"cited_by_count":11}],"updated_date":"2025-04-22T20:40:46.829424","created_date":"2022-10-25"}