{"id":"https://openalex.org/W3199545128","doi":"https://doi.org/10.1109/jbhi.2021.3110267","title":"Time-Frequency Analysis of Scalp EEG With Hilbert-Huang Transform and Deep Learning","display_name":"Time-Frequency Analysis of Scalp EEG With Hilbert-Huang Transform and Deep Learning","publication_year":2021,"publication_date":"2021-09-13","ids":{"openalex":"https://openalex.org/W3199545128","doi":"https://doi.org/10.1109/jbhi.2021.3110267","mag":"3199545128","pmid":"https://pubmed.ncbi.nlm.nih.gov/34516381"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1109/jbhi.2021.3110267","pdf_url":null,"source":{"id":"https://openalex.org/S2495854775","display_name":"IEEE Journal of Biomedical and Health Informatics","issn_l":"2168-2194","issn":["2168-2194","2168-2208"],"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310319808","host_organization_name":"Institute of Electrical and Electronics Engineers","host_organization_lineage":["https://openalex.org/P4310319808"],"host_organization_lineage_names":["Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":"publisher-specific-oa","license_id":"https://openalex.org/licenses/publisher-specific-oa","version":"acceptedVersion","is_accepted":true,"is_published":false},"type":"article","type_crossref":"journal-article","indexed_in":["crossref","pubmed"],"open_access":{"is_oa":true,"oa_status":"bronze","oa_url":"https://doi.org/10.1109/jbhi.2021.3110267","any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5002007282","display_name":"Jingyi Zheng","orcid":"https://orcid.org/0000-0002-0393-0997"},"institutions":[{"id":"https://openalex.org/I82497590","display_name":"Auburn University","ror":"https://ror.org/02v80fc35","country_code":"US","type":"funder","lineage":["https://openalex.org/I82497590"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Jingyi Zheng","raw_affiliation_strings":["Department of Mathematics, and Statistics, Auburn University, Auburn, AL, USA"],"affiliations":[{"raw_affiliation_string":"Department of Mathematics, and Statistics, Auburn University, Auburn, AL, USA","institution_ids":["https://openalex.org/I82497590"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5027733780","display_name":"Mingli Liang","orcid":"https://orcid.org/0000-0002-0668-8489"},"institutions":[{"id":"https://openalex.org/I138006243","display_name":"University of Arizona","ror":"https://ror.org/03m2x1q45","country_code":"US","type":"funder","lineage":["https://openalex.org/I138006243"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Mingli Liang","raw_affiliation_strings":["Department of Psychology, The University of Arizona, Tucson, AZ, USA"],"affiliations":[{"raw_affiliation_string":"Department of Psychology, The University of Arizona, Tucson, AZ, USA","institution_ids":["https://openalex.org/I138006243"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5059959184","display_name":"Sujata Sinha","orcid":null},"institutions":[{"id":"https://openalex.org/I4210151215","display_name":"Auburn University System","ror":"https://ror.org/03pwcc270","country_code":"US","type":"education","lineage":["https://openalex.org/I4210151215"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Sujata Sinha","raw_affiliation_strings":["Department of Computer Science and System Engineering, Auburn University, Auburn, AL, USA"],"affiliations":[{"raw_affiliation_string":"Department of Computer Science and System Engineering, Auburn University, Auburn, AL, USA","institution_ids":["https://openalex.org/I4210151215"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5083327767","display_name":"Linqiang Ge","orcid":"https://orcid.org/0000-0003-0817-8850"},"institutions":[{"id":"https://openalex.org/I199172307","display_name":"Columbus State University","ror":"https://ror.org/002nf6z37","country_code":"US","type":"funder","lineage":["https://openalex.org/I199172307"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Linqiang Ge","raw_affiliation_strings":["TSYS School of Computer Science, Columbus State University, Columbus, GA, USA"],"affiliations":[{"raw_affiliation_string":"TSYS School of Computer Science, Columbus State University, Columbus, GA, USA","institution_ids":["https://openalex.org/I199172307"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5002139930","display_name":"Wei Yu","orcid":"https://orcid.org/0000-0003-4522-7340"},"institutions":[{"id":"https://openalex.org/I4322298","display_name":"Towson University","ror":"https://ror.org/044w7a341","country_code":"US","type":"funder","lineage":["https://openalex.org/I4322298"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Wei Yu","raw_affiliation_strings":["Department of Computer and Information Sciences, Towson University, Towson, MD, USA"],"affiliations":[{"raw_affiliation_string":"Department of Computer and Information Sciences, Towson University, Towson, MD, USA","institution_ids":["https://openalex.org/I4322298"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5032270481","display_name":"Arne D. Ekstrom","orcid":"https://orcid.org/0000-0002-6812-2368"},"institutions":[{"id":"https://openalex.org/I138006243","display_name":"University of Arizona","ror":"https://ror.org/03m2x1q45","country_code":"US","type":"funder","lineage":["https://openalex.org/I138006243"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Arne Ekstrom","raw_affiliation_strings":["Department of Psychology, The University of Arizona, Tucson, AZ, USA"],"affiliations":[{"raw_affiliation_string":"Department of Psychology, The University of Arizona, Tucson, AZ, USA","institution_ids":["https://openalex.org/I138006243"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5090698453","display_name":"Fushing Hsieh","orcid":"https://orcid.org/0000-0002-9292-6980"},"institutions":[{"id":"https://openalex.org/I84218800","display_name":"University of California, Davis","ror":"https://ror.org/05rrcem69","country_code":"US","type":"funder","lineage":["https://openalex.org/I84218800"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Fushing Hsieh","raw_affiliation_strings":["Department of Statistics, University of California, Davis, CA, USA"],"affiliations":[{"raw_affiliation_string":"Department of Statistics, University of California, Davis, CA, USA","institution_ids":["https://openalex.org/I84218800"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":6,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":2.181,"has_fulltext":false,"cited_by_count":23,"citation_normalized_percentile":{"value":0.776633,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":93,"max":94},"biblio":{"volume":"26","issue":"4","first_page":"1549","last_page":"1559"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10429","display_name":"EEG and Brain-Computer Interfaces","score":1.0,"subfield":{"id":"https://openalex.org/subfields/2805","display_name":"Cognitive Neuroscience"},"field":{"id":"https://openalex.org/fields/28","display_name":"Neuroscience"},"domain":{"id":"https://openalex.org/domains/1","display_name":"Life Sciences"}},"topics":[{"id":"https://openalex.org/T10429","display_name":"EEG and Brain-Computer Interfaces","score":1.0,"subfield":{"id":"https://openalex.org/subfields/2805","display_name":"Cognitive Neuroscience"},"field":{"id":"https://openalex.org/fields/28","display_name":"Neuroscience"},"domain":{"id":"https://openalex.org/domains/1","display_name":"Life Sciences"}},{"id":"https://openalex.org/T10581","display_name":"Neural dynamics and brain function","score":0.999,"subfield":{"id":"https://openalex.org/subfields/2805","display_name":"Cognitive Neuroscience"},"field":{"id":"https://openalex.org/fields/28","display_name":"Neuroscience"},"domain":{"id":"https://openalex.org/domains/1","display_name":"Life Sciences"}},{"id":"https://openalex.org/T10241","display_name":"Functional Brain Connectivity Studies","score":0.996,"subfield":{"id":"https://openalex.org/subfields/2805","display_name":"Cognitive Neuroscience"},"field":{"id":"https://openalex.org/fields/28","display_name":"Neuroscience"},"domain":{"id":"https://openalex.org/domains/1","display_name":"Life Sciences"}}],"keywords":[],"concepts":[{"id":"https://openalex.org/C522805319","wikidata":"https://www.wikidata.org/wiki/Q179965","display_name":"Electroencephalography","level":2,"score":0.8219125},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.6996874},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.6897666},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.6773777},{"id":"https://openalex.org/C28799612","wikidata":"https://www.wikidata.org/wiki/Q685437","display_name":"Hilbert transform","level":3,"score":0.6211743},{"id":"https://openalex.org/C142433447","wikidata":"https://www.wikidata.org/wiki/Q7806653","display_name":"Time\u2013frequency analysis","level":3,"score":0.5916903},{"id":"https://openalex.org/C28490314","wikidata":"https://www.wikidata.org/wiki/Q189436","display_name":"Speech recognition","level":1,"score":0.50461733},{"id":"https://openalex.org/C25570617","wikidata":"https://www.wikidata.org/wiki/Q1006462","display_name":"Hilbert\u2013Huang transform","level":3,"score":0.4530702},{"id":"https://openalex.org/C52622490","wikidata":"https://www.wikidata.org/wiki/Q1026626","display_name":"Feature extraction","level":2,"score":0.43640977},{"id":"https://openalex.org/C196216189","wikidata":"https://www.wikidata.org/wiki/Q2867","display_name":"Wavelet transform","level":3,"score":0.43000218},{"id":"https://openalex.org/C47432892","wikidata":"https://www.wikidata.org/wiki/Q831390","display_name":"Wavelet","level":2,"score":0.4269144},{"id":"https://openalex.org/C168110828","wikidata":"https://www.wikidata.org/wiki/Q1331626","display_name":"Spectral density","level":2,"score":0.39958215},{"id":"https://openalex.org/C31972630","wikidata":"https://www.wikidata.org/wiki/Q844240","display_name":"Computer vision","level":1,"score":0.12912777},{"id":"https://openalex.org/C169760540","wikidata":"https://www.wikidata.org/wiki/Q207011","display_name":"Neuroscience","level":1,"score":0.10847616},{"id":"https://openalex.org/C15744967","wikidata":"https://www.wikidata.org/wiki/Q9418","display_name":"Psychology","level":0,"score":0.09122449},{"id":"https://openalex.org/C76155785","wikidata":"https://www.wikidata.org/wiki/Q418","display_name":"Telecommunications","level":1,"score":0.0},{"id":"https://openalex.org/C106131492","wikidata":"https://www.wikidata.org/wiki/Q3072260","display_name":"Filter (signal processing)","level":2,"score":0.0}],"mesh":[{"descriptor_ui":"D058256","descriptor_name":"Brain Waves","qualifier_ui":"","qualifier_name":null,"is_major_topic":true},{"descriptor_ui":"D000077321","descriptor_name":"Deep Learning","qualifier_ui":"","qualifier_name":null,"is_major_topic":true},{"descriptor_ui":"D000465","descriptor_name":"Algorithms","qualifier_ui":"","qualifier_name":null,"is_major_topic":false},{"descriptor_ui":"D004569","descriptor_name":"Electroencephalography","qualifier_ui":"","qualifier_name":null,"is_major_topic":false},{"descriptor_ui":"D004569","descriptor_name":"Electroencephalography","qualifier_ui":"Q000379","qualifier_name":"methods","is_major_topic":false},{"descriptor_ui":"D006801","descriptor_name":"Humans","qualifier_ui":"","qualifier_name":null,"is_major_topic":false},{"descriptor_ui":"D012535","descriptor_name":"Scalp","qualifier_ui":"","qualifier_name":null,"is_major_topic":false},{"descriptor_ui":"D058067","descriptor_name":"Wavelet Analysis","qualifier_ui":"","qualifier_name":null,"is_major_topic":false}],"locations_count":2,"locations":[{"is_oa":true,"landing_page_url":"https://doi.org/10.1109/jbhi.2021.3110267","pdf_url":null,"source":{"id":"https://openalex.org/S2495854775","display_name":"IEEE Journal of Biomedical and Health Informatics","issn_l":"2168-2194","issn":["2168-2194","2168-2208"],"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310319808","host_organization_name":"Institute of Electrical and Electronics Engineers","host_organization_lineage":["https://openalex.org/P4310319808"],"host_organization_lineage_names":["Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":"publisher-specific-oa","license_id":"https://openalex.org/licenses/publisher-specific-oa","version":"acceptedVersion","is_accepted":true,"is_published":false},{"is_oa":false,"landing_page_url":"https://pubmed.ncbi.nlm.nih.gov/34516381","pdf_url":null,"source":{"id":"https://openalex.org/S4306525036","display_name":"PubMed","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I1299303238","host_organization_name":"National Institutes of Health","host_organization_lineage":["https://openalex.org/I1299303238"],"host_organization_lineage_names":["National Institutes of Health"],"type":"repository"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1109/jbhi.2021.3110267","pdf_url":null,"source":{"id":"https://openalex.org/S2495854775","display_name":"IEEE Journal of Biomedical and Health Informatics","issn_l":"2168-2194","issn":["2168-2194","2168-2208"],"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310319808","host_organization_name":"Institute of Electrical and Electronics Engineers","host_organization_lineage":["https://openalex.org/P4310319808"],"host_organization_lineage_names":["Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":"publisher-specific-oa","license_id":"https://openalex.org/licenses/publisher-specific-oa","version":"acceptedVersion","is_accepted":true,"is_published":false},"sustainable_development_goals":[{"display_name":"Reduced inequalities","id":"https://metadata.un.org/sdg/10","score":0.72}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":38,"referenced_works":["https://openalex.org/W1947251450","https://openalex.org/W1985318799","https://openalex.org/W1989895341","https://openalex.org/W2003352387","https://openalex.org/W2007221293","https://openalex.org/W2090023856","https://openalex.org/W2096316691","https://openalex.org/W2098330912","https://openalex.org/W2105400683","https://openalex.org/W2128495200","https://openalex.org/W2139365055","https://openalex.org/W2140199391","https://openalex.org/W2156192068","https://openalex.org/W2163028963","https://openalex.org/W2464260898","https://openalex.org/W2557266798","https://openalex.org/W2557301950","https://openalex.org/W2577361998","https://openalex.org/W2580194401","https://openalex.org/W2601369343","https://openalex.org/W2741907166","https://openalex.org/W2742472784","https://openalex.org/W2759483166","https://openalex.org/W2762427114","https://openalex.org/W2769191685","https://openalex.org/W2801406888","https://openalex.org/W2808375025","https://openalex.org/W2888556550","https://openalex.org/W2903047370","https://openalex.org/W2905915376","https://openalex.org/W2912155208","https://openalex.org/W2914237854","https://openalex.org/W2920259346","https://openalex.org/W2951638655","https://openalex.org/W2964121744","https://openalex.org/W2976761069","https://openalex.org/W3009861064","https://openalex.org/W3192123472"],"related_works":["https://openalex.org/W3190676168","https://openalex.org/W2363056446","https://openalex.org/W2353960620","https://openalex.org/W2107880197","https://openalex.org/W2083592477","https://openalex.org/W2074184731","https://openalex.org/W2060439639","https://openalex.org/W2004948286","https://openalex.org/W1986719249","https://openalex.org/W154554909"],"abstract_inverted_index":{"Electroencephalography":[0],"(EEG)":[1],"is":[2],"a":[3,86,100],"brain":[4,110],"imaging":[5],"approach":[6,90],"that":[7,180],"has":[8],"been":[9],"widely":[10],"used":[11,167],"in":[12,46,67,193,208,217],"neuroscience":[13,219],"and":[14,30,51,70,136,162,173,213],"clinical":[15],"settings.":[16],"The":[17,149,176],"conventional":[18],"EEG":[19,35,94,147,160],"analyses":[20],"usually":[21],"require":[22],"pre-defined":[23],"frequency":[24,47,107,121,137],"bands":[25,48,108,122],"when":[26],"characterizing":[27],"neural":[28,38,211],"oscillations":[29,111,212],"extracting":[31],"features":[32,168,189],"for":[33,62,91,109,123],"classifying":[34],"signals.":[36,95,148],"However,":[37],"responses":[39],"are":[40,155,184],"naturally":[41],"heterogeneous":[42],"by":[43,142],"showing":[44],"variations":[45,64],"of":[49,54,118,139,151,196,210],"brainwaves":[50,140],"peak":[52],"frequencies":[53],"oscillatory":[55],"modes":[56],"across":[57,78],"individuals.":[58,79],"Fail":[59],"to":[60,103,132,191,198],"account":[61],"such":[63],"might":[65],"result":[66],"information":[68],"loss":[69],"classifiers":[71],"with":[72,164],"low":[73],"accuracy":[74],"but":[75],"high":[76],"variation":[77],"To":[80],"address":[81],"these":[82],"issues,":[83],"we":[84,98,127],"present":[85],"systematic":[87],"time-frequency":[88],"analysis":[89],"analyzing":[92],"scalp":[93,159],"In":[96],"particular,":[97],"propose":[99,128],"data-driven":[101],"method":[102],"compute":[104],"the":[105,116,134,146,152,181,194,202,218],"subject-specific":[106],"via":[112],"Hilbert-Huang":[113,174],"Transform,":[114],"lifting":[115],"restriction":[117],"using":[119],"fixed":[120],"all":[124],"subjects.":[125],"Then,":[126],"two":[129,158],"novel":[130],"metrics":[131,154,183,204],"quantify":[133],"power":[135],"aspects":[138],"represented":[141],"sub-signals":[143],"decomposed":[144],"from":[145,171],"effectiveness":[150],"proposed":[153,182,203],"tested":[156],"on":[157],"datasets":[161],"compared":[163],"four":[165],"commonly":[166],"sets":[169],"extracted":[170],"wavelet":[172],"Transform.":[175],"validation":[177],"results":[178],"show":[179,205],"more":[185],"discriminatory":[186],"than":[187],"other":[188],"leading":[190],"accuracies":[192],"range":[195],"94.93%":[197],"99.84%.":[199],"Besides":[200],"classification,":[201],"great":[206],"potential":[207],"quantification":[209],"serving":[214],"as":[215],"biomarkers":[216],"research.":[220]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W3199545128","counts_by_year":[{"year":2025,"cited_by_count":1},{"year":2024,"cited_by_count":8},{"year":2023,"cited_by_count":8},{"year":2022,"cited_by_count":4}],"updated_date":"2025-04-26T10:35:32.927839","created_date":"2021-09-27"}