{"id":"https://openalex.org/W2949346062","doi":"https://doi.org/10.1109/iww-bci.2019.8737341","title":"Optimization method of error-related potentials to improve MI-BCI performance","display_name":"Optimization method of error-related potentials to improve MI-BCI performance","publication_year":2019,"publication_date":"2019-02-01","ids":{"openalex":"https://openalex.org/W2949346062","doi":"https://doi.org/10.1109/iww-bci.2019.8737341","mag":"2949346062"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/iww-bci.2019.8737341","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5046391746","display_name":"Seul Kee Kim","orcid":"https://orcid.org/0000-0002-1508-5057"},"institutions":[{"id":"https://openalex.org/I58716616","display_name":"Korea Institute of Science and Technology","ror":"https://ror.org/05kzfa883","country_code":"KR","type":"facility","lineage":["https://openalex.org/I58716616"]}],"countries":["KR"],"is_corresponding":false,"raw_author_name":"Seul-Kee Kim","raw_affiliation_strings":["Center for Bionics, Korea Institute of Science and Technology, Seoul, South Korea"],"affiliations":[{"raw_affiliation_string":"Center for Bionics, Korea Institute of Science and Technology, Seoul, South Korea","institution_ids":["https://openalex.org/I58716616"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5101542371","display_name":"Da\u2010Hye Kim","orcid":"https://orcid.org/0000-0003-4578-7807"},"institutions":[{"id":"https://openalex.org/I58716616","display_name":"Korea Institute of Science and Technology","ror":"https://ror.org/05kzfa883","country_code":"KR","type":"facility","lineage":["https://openalex.org/I58716616"]}],"countries":["KR"],"is_corresponding":false,"raw_author_name":"Da-Hye Kim","raw_affiliation_strings":["Center for Bionics, Korea Institute of Science and Technology, Seoul, South Korea"],"affiliations":[{"raw_affiliation_string":"Center for Bionics, Korea Institute of Science and Technology, Seoul, South Korea","institution_ids":["https://openalex.org/I58716616"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5027143700","display_name":"Laehyun Kim","orcid":"https://orcid.org/0000-0002-5769-1039"},"institutions":[{"id":"https://openalex.org/I58716616","display_name":"Korea Institute of Science and Technology","ror":"https://ror.org/05kzfa883","country_code":"KR","type":"facility","lineage":["https://openalex.org/I58716616"]}],"countries":["KR"],"is_corresponding":false,"raw_author_name":"Laehyun Kim","raw_affiliation_strings":["Center for Bionics, Korea Institute of Science and Technology, Seoul, South Korea"],"affiliations":[{"raw_affiliation_string":"Center for Bionics, Korea Institute of Science and Technology, Seoul, South Korea","institution_ids":["https://openalex.org/I58716616"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.229,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":3,"citation_normalized_percentile":{"value":0.513449,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":74,"max":77},"biblio":{"volume":null,"issue":null,"first_page":"1","last_page":"5"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10429","display_name":"EEG and Brain-Computer Interfaces","score":1.0,"subfield":{"id":"https://openalex.org/subfields/2805","display_name":"Cognitive Neuroscience"},"field":{"id":"https://openalex.org/fields/28","display_name":"Neuroscience"},"domain":{"id":"https://openalex.org/domains/1","display_name":"Life Sciences"}},"topics":[{"id":"https://openalex.org/T10429","display_name":"EEG and Brain-Computer Interfaces","score":1.0,"subfield":{"id":"https://openalex.org/subfields/2805","display_name":"Cognitive Neuroscience"},"field":{"id":"https://openalex.org/fields/28","display_name":"Neuroscience"},"domain":{"id":"https://openalex.org/domains/1","display_name":"Life Sciences"}},{"id":"https://openalex.org/T11601","display_name":"Neuroscience and Neural Engineering","score":0.9965,"subfield":{"id":"https://openalex.org/subfields/2804","display_name":"Cellular and Molecular Neuroscience"},"field":{"id":"https://openalex.org/fields/28","display_name":"Neuroscience"},"domain":{"id":"https://openalex.org/domains/1","display_name":"Life Sciences"}},{"id":"https://openalex.org/T11707","display_name":"Gaze Tracking and Assistive Technology","score":0.9924,"subfield":{"id":"https://openalex.org/subfields/1709","display_name":"Human-Computer Interaction"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/resampling","display_name":"Resampling","score":0.82811373},{"id":"https://openalex.org/keywords/word-error-rate","display_name":"Word error rate","score":0.4391908}],"concepts":[{"id":"https://openalex.org/C150921843","wikidata":"https://www.wikidata.org/wiki/Q1170431","display_name":"Resampling","level":2,"score":0.82811373},{"id":"https://openalex.org/C173201364","wikidata":"https://www.wikidata.org/wiki/Q897410","display_name":"Brain\u2013computer interface","level":3,"score":0.66311204},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.64095306},{"id":"https://openalex.org/C69738355","wikidata":"https://www.wikidata.org/wiki/Q1228929","display_name":"Linear discriminant analysis","level":2,"score":0.62947035},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.5007489},{"id":"https://openalex.org/C19118579","wikidata":"https://www.wikidata.org/wiki/Q786423","display_name":"Frequency domain","level":2,"score":0.46309543},{"id":"https://openalex.org/C40969351","wikidata":"https://www.wikidata.org/wiki/Q3516228","display_name":"Word error rate","level":2,"score":0.4391908},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.39695773},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.36086467},{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.3248371},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.28143644},{"id":"https://openalex.org/C522805319","wikidata":"https://www.wikidata.org/wiki/Q179965","display_name":"Electroencephalography","level":2,"score":0.15119994},{"id":"https://openalex.org/C15744967","wikidata":"https://www.wikidata.org/wiki/Q9418","display_name":"Psychology","level":0,"score":0.0},{"id":"https://openalex.org/C118552586","wikidata":"https://www.wikidata.org/wiki/Q7867","display_name":"Psychiatry","level":1,"score":0.0},{"id":"https://openalex.org/C31972630","wikidata":"https://www.wikidata.org/wiki/Q844240","display_name":"Computer vision","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/iww-bci.2019.8737341","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"id":"https://metadata.un.org/sdg/10","score":0.68,"display_name":"Reduced inequalities"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":19,"referenced_works":["https://openalex.org/W1674182651","https://openalex.org/W1694127584","https://openalex.org/W1972765153","https://openalex.org/W2060004431","https://openalex.org/W2062402165","https://openalex.org/W2064780604","https://openalex.org/W2071583576","https://openalex.org/W2094479478","https://openalex.org/W2098100592","https://openalex.org/W2105478324","https://openalex.org/W2111692383","https://openalex.org/W2112359769","https://openalex.org/W2137237725","https://openalex.org/W2143183535","https://openalex.org/W2144383914","https://openalex.org/W2152693668","https://openalex.org/W2170821486","https://openalex.org/W2246170000","https://openalex.org/W2340819051"],"related_works":["https://openalex.org/W4319302618","https://openalex.org/W4237513258","https://openalex.org/W3202969339","https://openalex.org/W3177028067","https://openalex.org/W2889342546","https://openalex.org/W2052515325","https://openalex.org/W2044053727","https://openalex.org/W2015048155","https://openalex.org/W1994410349","https://openalex.org/W1913385466"],"abstract_inverted_index":{"This":[0],"paper":[1],"proposes":[2],"an":[3],"optimization":[4],"method":[5,11],"of":[6,62,67,86,110],"error-related":[7],"potentials":[8],"(ErrPs).":[9],"The":[10,76],"is":[12,41],"used":[13,26],"to":[14,37,105],"improve":[15],"motor":[16],"imagery":[17],"(MI)-BCI":[18],"performance":[19,103],"by":[20,58],"rapidly":[21],"correcting":[22],"MIBCI":[23,48],"errors.":[24],"We":[25,50],"the":[27,42,52,60,63,68,90,94,116,119,125,131,141,151,158,162],"linear":[28],"discriminant":[29],"analysis":[30,34],"and":[31,73],"spatial-temporal":[32],"domain":[33],"(STDA)":[35],"algorithms":[36,64],"detect":[38],"ErrP,":[39],"which":[40],"brain":[43],"response":[44],"measured":[45],"immediately":[46],"after":[47],"error.":[49],"found":[51],"optimal":[53,142],"conditions":[54],"for":[55,124],"detecting":[56],"ErrPs":[57],"comparing":[59],"performances":[61],"in":[65,115,140,157,161],"terms":[66],"resampling":[69,84],"rate,":[70],"spatial":[71,91],"domain,":[72,92,118],"temporal":[74,117],"domain.":[75],"best":[77,132],"sample":[78],"size":[79],"was":[80,122],"obtained":[81,123],"at":[82,127],"a":[83,107],"rate":[85],"21":[87],"Hz.":[88],"In":[89],"using":[93,106],"data":[95,126],"from":[96],"8":[97],"or":[98],"16":[99,148],"channels":[100],"provided":[101],"better":[102],"compared":[104],"higher":[108],"number":[109],"channels.":[111],"For":[112],"epoch":[113],"selection":[114],"highest":[120],"accuracy":[121,139,156],"1000":[128,146],"ms.":[129],"Finally,":[130],"performers":[133,153],"among":[134],"all":[135],"subjects":[136],"exhibited":[137,154],"86%":[138],"condition":[143],"(21":[144],"Hz,":[145],"ms,":[147],"ch),":[149],"while":[150],"worst":[152],"58.67%":[155],"first":[159],"trial":[160],"STDA":[163],"algorithm.":[164]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2949346062","counts_by_year":[{"year":2023,"cited_by_count":1},{"year":2022,"cited_by_count":1},{"year":2021,"cited_by_count":1}],"updated_date":"2025-01-18T08:58:30.808257","created_date":"2019-06-27"}