{"id":"https://openalex.org/W2964407906","doi":"https://doi.org/10.1109/iwssip.2019.8787327","title":"Deep Learning-Based Pore Segmentation of Thin Rock Sections for Aquifer Characterization Using Color Space Reduction","display_name":"Deep Learning-Based Pore Segmentation of Thin Rock Sections for Aquifer Characterization Using Color Space Reduction","publication_year":2019,"publication_date":"2019-06-01","ids":{"openalex":"https://openalex.org/W2964407906","doi":"https://doi.org/10.1109/iwssip.2019.8787327","mag":"2964407906"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/iwssip.2019.8787327","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5050942631","display_name":"Vitor G. Marques","orcid":null},"institutions":[{"id":"https://openalex.org/I35046152","display_name":"Universidade Federal do Rio Grande do Norte","ror":"https://ror.org/04wn09761","country_code":"BR","type":"education","lineage":["https://openalex.org/I35046152"]}],"countries":["BR"],"is_corresponding":false,"raw_author_name":"Vitor G. Marques","raw_affiliation_strings":["Federal University of Rio Grande do Norte, Natal, Brazil"],"affiliations":[{"raw_affiliation_string":"Federal University of Rio Grande do Norte, Natal, Brazil","institution_ids":["https://openalex.org/I35046152"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5022342539","display_name":"Luis R. D. da Silva","orcid":null},"institutions":[{"id":"https://openalex.org/I35046152","display_name":"Universidade Federal do Rio Grande do Norte","ror":"https://ror.org/04wn09761","country_code":"BR","type":"education","lineage":["https://openalex.org/I35046152"]}],"countries":["BR"],"is_corresponding":false,"raw_author_name":"Luis R. D. da Silva","raw_affiliation_strings":["Federal University of Rio Grande do Norte, Natal, Brazil"],"affiliations":[{"raw_affiliation_string":"Federal University of Rio Grande do Norte, Natal, Brazil","institution_ids":["https://openalex.org/I35046152"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5059024357","display_name":"Bruno M. Carvalho","orcid":"https://orcid.org/0000-0002-9122-0257"},"institutions":[{"id":"https://openalex.org/I35046152","display_name":"Universidade Federal do Rio Grande do Norte","ror":"https://ror.org/04wn09761","country_code":"BR","type":"education","lineage":["https://openalex.org/I35046152"]}],"countries":["BR"],"is_corresponding":false,"raw_author_name":"Bruno M. Carvalho","raw_affiliation_strings":["Federal University of Rio Grande do Norte, Natal, Brazil"],"affiliations":[{"raw_affiliation_string":"Federal University of Rio Grande do Norte, Natal, Brazil","institution_ids":["https://openalex.org/I35046152"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5083413864","display_name":"Leandson Roberto Fernandes de Lucena","orcid":"https://orcid.org/0000-0002-7713-861X"},"institutions":[{"id":"https://openalex.org/I35046152","display_name":"Universidade Federal do Rio Grande do Norte","ror":"https://ror.org/04wn09761","country_code":"BR","type":"education","lineage":["https://openalex.org/I35046152"]}],"countries":["BR"],"is_corresponding":false,"raw_author_name":"Leandson R. F. de Lucena","raw_affiliation_strings":["Federal University of Rio Grande do Norte, Natal, Brazil"],"affiliations":[{"raw_affiliation_string":"Federal University of Rio Grande do Norte, Natal, Brazil","institution_ids":["https://openalex.org/I35046152"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5107854036","display_name":"Marcela Marques Vieira","orcid":null},"institutions":[{"id":"https://openalex.org/I35046152","display_name":"Universidade Federal do Rio Grande do Norte","ror":"https://ror.org/04wn09761","country_code":"BR","type":"education","lineage":["https://openalex.org/I35046152"]}],"countries":["BR"],"is_corresponding":false,"raw_author_name":"Marcela M. Vieira","raw_affiliation_strings":["Federal University of Rio Grande do Norte, Natal, Brazil"],"affiliations":[{"raw_affiliation_string":"Federal University of Rio Grande do Norte, Natal, Brazil","institution_ids":["https://openalex.org/I35046152"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":1.743,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":4,"citation_normalized_percentile":{"value":0.787294,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":77,"max":79},"biblio":{"volume":null,"issue":null,"first_page":"235","last_page":"240"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T12282","display_name":"Mineral Processing and Grinding","score":0.9942,"subfield":{"id":"https://openalex.org/subfields/2210","display_name":"Mechanical Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T12282","display_name":"Mineral Processing and Grinding","score":0.9942,"subfield":{"id":"https://openalex.org/subfields/2210","display_name":"Mechanical Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10491","display_name":"Enhanced Oil Recovery Techniques","score":0.9921,"subfield":{"id":"https://openalex.org/subfields/2212","display_name":"Ocean Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10052","display_name":"Medical Image Segmentation Techniques","score":0.9892,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/s\u00f8rensen\u2013dice-coefficient","display_name":"S\u00f8rensen\u2013Dice coefficient","score":0.6373059},{"id":"https://openalex.org/keywords/dice","display_name":"Dice","score":0.58180666},{"id":"https://openalex.org/keywords/convolution","display_name":"Convolution (computer science)","score":0.52896255}],"concepts":[{"id":"https://openalex.org/C75622301","wikidata":"https://www.wikidata.org/wiki/Q208791","display_name":"Aquifer","level":3,"score":0.7085278},{"id":"https://openalex.org/C163892561","wikidata":"https://www.wikidata.org/wiki/Q2613728","display_name":"S\u00f8rensen\u2013Dice coefficient","level":4,"score":0.6373059},{"id":"https://openalex.org/C89600930","wikidata":"https://www.wikidata.org/wiki/Q1423946","display_name":"Segmentation","level":2,"score":0.5901302},{"id":"https://openalex.org/C22029948","wikidata":"https://www.wikidata.org/wiki/Q45089","display_name":"Dice","level":2,"score":0.58180666},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.5495835},{"id":"https://openalex.org/C160633673","wikidata":"https://www.wikidata.org/wiki/Q355198","display_name":"Pixel","level":2,"score":0.54608226},{"id":"https://openalex.org/C45347329","wikidata":"https://www.wikidata.org/wiki/Q5166604","display_name":"Convolution (computer science)","level":3,"score":0.52896255},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.5186},{"id":"https://openalex.org/C63184880","wikidata":"https://www.wikidata.org/wiki/Q2783041","display_name":"Hydraulic conductivity","level":3,"score":0.45246765},{"id":"https://openalex.org/C21200559","wikidata":"https://www.wikidata.org/wiki/Q7451068","display_name":"Sensitivity (control systems)","level":2,"score":0.43210554},{"id":"https://openalex.org/C140779682","wikidata":"https://www.wikidata.org/wiki/Q210868","display_name":"Sampling (signal processing)","level":3,"score":0.41913614},{"id":"https://openalex.org/C124504099","wikidata":"https://www.wikidata.org/wiki/Q56933","display_name":"Image segmentation","level":3,"score":0.37770677},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.37722072},{"id":"https://openalex.org/C127313418","wikidata":"https://www.wikidata.org/wiki/Q1069","display_name":"Geology","level":0,"score":0.3614614},{"id":"https://openalex.org/C31972630","wikidata":"https://www.wikidata.org/wiki/Q844240","display_name":"Computer vision","level":1,"score":0.35120457},{"id":"https://openalex.org/C62649853","wikidata":"https://www.wikidata.org/wiki/Q199687","display_name":"Remote sensing","level":1,"score":0.3437181},{"id":"https://openalex.org/C159390177","wikidata":"https://www.wikidata.org/wiki/Q9161265","display_name":"Soil science","level":1,"score":0.24469194},{"id":"https://openalex.org/C76177295","wikidata":"https://www.wikidata.org/wiki/Q161598","display_name":"Groundwater","level":2,"score":0.19964716},{"id":"https://openalex.org/C187320778","wikidata":"https://www.wikidata.org/wiki/Q1349130","display_name":"Geotechnical engineering","level":1,"score":0.15664369},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.15379179},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.1436967},{"id":"https://openalex.org/C127413603","wikidata":"https://www.wikidata.org/wiki/Q11023","display_name":"Engineering","level":0,"score":0.11375597},{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.10259858},{"id":"https://openalex.org/C24326235","wikidata":"https://www.wikidata.org/wiki/Q126095","display_name":"Electronic engineering","level":1,"score":0.08757177},{"id":"https://openalex.org/C106131492","wikidata":"https://www.wikidata.org/wiki/Q3072260","display_name":"Filter (signal processing)","level":2,"score":0.0},{"id":"https://openalex.org/C159750122","wikidata":"https://www.wikidata.org/wiki/Q96621023","display_name":"Soil water","level":2,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/iwssip.2019.8787327","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":28,"referenced_works":["https://openalex.org/W1522301498","https://openalex.org/W1901129140","https://openalex.org/W1903029394","https://openalex.org/W1980025349","https://openalex.org/W1993456370","https://openalex.org/W1997493041","https://openalex.org/W2025836343","https://openalex.org/W2026632831","https://openalex.org/W2037954058","https://openalex.org/W2044416991","https://openalex.org/W2049376769","https://openalex.org/W2059960649","https://openalex.org/W2065443897","https://openalex.org/W2078638796","https://openalex.org/W2080944378","https://openalex.org/W2102134277","https://openalex.org/W2126440645","https://openalex.org/W2136704614","https://openalex.org/W2282915343","https://openalex.org/W2291109233","https://openalex.org/W2402144811","https://openalex.org/W2548134678","https://openalex.org/W2898800333","https://openalex.org/W2953384591","https://openalex.org/W2963881378","https://openalex.org/W2964121744","https://openalex.org/W3013843341","https://openalex.org/W4239147634"],"related_works":["https://openalex.org/W4402926319","https://openalex.org/W4391935352","https://openalex.org/W4389060404","https://openalex.org/W4286233748","https://openalex.org/W4254054209","https://openalex.org/W4200334192","https://openalex.org/W3104750253","https://openalex.org/W3012828488","https://openalex.org/W2973136608","https://openalex.org/W2952835238"],"abstract_inverted_index":{"The":[0,145,173],"conventional":[1],"way":[2],"of":[3,7,17,28,42,45,76,84,102,122,148,189,193,198,203],"obtaining":[4,59],"hydraulic":[5,169],"parameters":[6,63,170],"aquifers":[8],"is":[9],"through":[10],"aquifer":[11],"tests;":[12],"by":[13,79,126,178],"performing":[14],"the":[15,38,69,100,136,179,183,187],"interpretation":[16],"data":[18],"whose":[19],"acquisition":[20],"requires":[21],"a":[22,54,108,128],"fairly":[23],"complex":[24],"logistics":[25],"in":[26,156,167],"terms":[27],"equipment":[29],"and":[30,40,66,82,91,112,119,124,139,152,205],"personnel":[31],"A":[32],"completely":[33],"different":[34],"approach":[35,57,73],"that":[36,130,160],"employs":[37],"processing":[39],"analysis":[41,101],"digital":[43],"images":[44],"thin":[46,114],"rock":[47,85,115],"sample":[48],"micrographs,":[49],"has":[50,96],"proven":[51],"to":[52,99,209],"be":[53,164],"promising":[55],"alternative":[56],"for":[58,61,110],"estimates":[60],"hydraulics":[62],"being":[64],"simpler":[65],"cheaper":[67],"than":[68],"traditional":[70],"methodology.":[71],"This":[72,94],"involves":[74],"sampling":[75],"rocks":[77,123],"followed":[78],"thinning":[80],"out":[81],"imaging":[83],"samples,":[86],"image":[87],"segmentation,":[88],"three-dimensional":[89],"reconstruction":[90],"flow":[92],"simulation.":[93],"methodology":[95,162],"been":[97],"applied":[98,166],"several":[103],"aquifers.":[104],"Here,":[105],"we":[106],"propose":[107],"method":[109],"segmenting":[111],"classifying":[113],"sections":[116],"into":[117],"pores":[118],"background":[120],"(comprised":[121],"cement),":[125],"using":[127,142],"procedure":[129],"performs":[131],"color":[132,184],"space":[133,138,185],"reduction":[134],"on":[135],"CIELab":[137],"pixel":[140],"classification":[141],"convolutional":[143],"networks.":[144],"high":[146],"values":[147,188],"accuracy,":[149,194],"specificity,":[150,199],"sensitivity":[151,204],"Dice":[153,206],"coefficient":[154,207],"obtained":[155,177],"our":[157,168],"experiments":[158],"indicate":[159],"this":[161],"can":[163],"safely":[165],"estimation":[171],"system.":[172],"best":[174],"results":[175],"were":[176],"SegNet":[180],"network":[181],"with":[182],"redaction,":[186],"0.9609":[190,195],"\u00b1":[191,196,201,211],"0.0339":[192,197,202],"0.9707":[200],"equivalent":[208],"0.8873":[210],"0.1382.":[212]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2964407906","counts_by_year":[{"year":2023,"cited_by_count":1},{"year":2021,"cited_by_count":1},{"year":2020,"cited_by_count":2}],"updated_date":"2024-12-09T00:21:44.517141","created_date":"2019-08-13"}