{"id":"https://openalex.org/W2966573791","doi":"https://doi.org/10.1109/iwssip.2019.8787304","title":"A Low-Budget Approach for Vehicle Detection and Occlusion Removal on Traffic Videos","display_name":"A Low-Budget Approach for Vehicle Detection and Occlusion Removal on Traffic Videos","publication_year":2019,"publication_date":"2019-06-01","ids":{"openalex":"https://openalex.org/W2966573791","doi":"https://doi.org/10.1109/iwssip.2019.8787304","mag":"2966573791"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/iwssip.2019.8787304","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5066912516","display_name":"Luis F. V. Silva","orcid":null},"institutions":[{"id":"https://openalex.org/I3020002803","display_name":"Instituto Federal do Rio Grande do Norte","ror":"https://ror.org/04je48v27","country_code":"BR","type":"education","lineage":["https://openalex.org/I3020002803"]}],"countries":["BR"],"is_corresponding":false,"raw_author_name":"Luis F. V. Silva","raw_affiliation_strings":["Federal Institute of Rio Grande do Norte, Brazil"],"affiliations":[{"raw_affiliation_string":"Federal Institute of Rio Grande do Norte, Brazil","institution_ids":["https://openalex.org/I3020002803"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5007840623","display_name":"Danilo Rodrigo Cavalcante Bandeira","orcid":null},"institutions":[{"id":"https://openalex.org/I35046152","display_name":"Universidade Federal do Rio Grande do Norte","ror":"https://ror.org/04wn09761","country_code":"BR","type":"education","lineage":["https://openalex.org/I35046152"]}],"countries":["BR"],"is_corresponding":false,"raw_author_name":"Danilo R. C. Bandeira","raw_affiliation_strings":["Federal University of Rio Grande do Norte, Natal, Brazil"],"affiliations":[{"raw_affiliation_string":"Federal University of Rio Grande do Norte, Natal, Brazil","institution_ids":["https://openalex.org/I35046152"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5059024357","display_name":"Bruno M. Carvalho","orcid":"https://orcid.org/0000-0002-9122-0257"},"institutions":[{"id":"https://openalex.org/I35046152","display_name":"Universidade Federal do Rio Grande do Norte","ror":"https://ror.org/04wn09761","country_code":"BR","type":"education","lineage":["https://openalex.org/I35046152"]}],"countries":["BR"],"is_corresponding":false,"raw_author_name":"Bruno M. Carvalho","raw_affiliation_strings":["Federal University of Rio Grande do Norte, Natal, Brazil"],"affiliations":[{"raw_affiliation_string":"Federal University of Rio Grande do Norte, Natal, Brazil","institution_ids":["https://openalex.org/I35046152"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":2,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.11,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":2,"citation_normalized_percentile":{"value":0.34766,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":69,"max":74},"biblio":{"volume":null,"issue":null,"first_page":"77","last_page":"82"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10331","display_name":"Video Surveillance and Tracking Methods","score":1.0,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10331","display_name":"Video Surveillance and Tracking Methods","score":1.0,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11019","display_name":"Image Enhancement Techniques","score":0.999,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10036","display_name":"Advanced Neural Network Applications","score":0.9989,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/raspberry-pi","display_name":"Raspberry Pi","score":0.71982753},{"id":"https://openalex.org/keywords/frame-rate","display_name":"Frame rate","score":0.4310595}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.7313304},{"id":"https://openalex.org/C2985745059","wikidata":"https://www.wikidata.org/wiki/Q245","display_name":"Raspberry pi","level":3,"score":0.71982753},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.505414},{"id":"https://openalex.org/C31972630","wikidata":"https://www.wikidata.org/wiki/Q844240","display_name":"Computer vision","level":1,"score":0.47073066},{"id":"https://openalex.org/C52121051","wikidata":"https://www.wikidata.org/wiki/Q43193","display_name":"Truck","level":2,"score":0.44384217},{"id":"https://openalex.org/C2776151529","wikidata":"https://www.wikidata.org/wiki/Q3045304","display_name":"Object detection","level":3,"score":0.44109035},{"id":"https://openalex.org/C3261483","wikidata":"https://www.wikidata.org/wiki/Q119565","display_name":"Frame rate","level":2,"score":0.4310595},{"id":"https://openalex.org/C139807058","wikidata":"https://www.wikidata.org/wiki/Q352374","display_name":"Adaptation (eye)","level":2,"score":0.43066242},{"id":"https://openalex.org/C2992841829","wikidata":"https://www.wikidata.org/wiki/Q550329","display_name":"Closed circuit","level":2,"score":0.41695824},{"id":"https://openalex.org/C79403827","wikidata":"https://www.wikidata.org/wiki/Q3988","display_name":"Real-time computing","level":1,"score":0.4129689},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.1704632},{"id":"https://openalex.org/C149635348","wikidata":"https://www.wikidata.org/wiki/Q193040","display_name":"Embedded system","level":1,"score":0.16423562},{"id":"https://openalex.org/C127413603","wikidata":"https://www.wikidata.org/wiki/Q11023","display_name":"Engineering","level":0,"score":0.12898779},{"id":"https://openalex.org/C171146098","wikidata":"https://www.wikidata.org/wiki/Q124192","display_name":"Automotive engineering","level":1,"score":0.08611965},{"id":"https://openalex.org/C76155785","wikidata":"https://www.wikidata.org/wiki/Q418","display_name":"Telecommunications","level":1,"score":0.0},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C120665830","wikidata":"https://www.wikidata.org/wiki/Q14620","display_name":"Optics","level":1,"score":0.0},{"id":"https://openalex.org/C81860439","wikidata":"https://www.wikidata.org/wiki/Q251212","display_name":"Internet of Things","level":2,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/iwssip.2019.8787304","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"score":0.83,"id":"https://metadata.un.org/sdg/11","display_name":"Sustainable cities and communities"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":23,"referenced_works":["https://openalex.org/W1566376227","https://openalex.org/W1573546770","https://openalex.org/W1591839971","https://openalex.org/W1963908057","https://openalex.org/W1978565797","https://openalex.org/W2039051707","https://openalex.org/W2042847696","https://openalex.org/W2075238304","https://openalex.org/W2081796650","https://openalex.org/W2100804244","https://openalex.org/W2127782573","https://openalex.org/W2160367227","https://openalex.org/W2163352848","https://openalex.org/W2164598857","https://openalex.org/W2189544031","https://openalex.org/W2198743125","https://openalex.org/W2530858826","https://openalex.org/W2574028309","https://openalex.org/W2766584639","https://openalex.org/W2963037989","https://openalex.org/W3097096317","https://openalex.org/W4248480183","https://openalex.org/W4293584584"],"related_works":["https://openalex.org/W767149399","https://openalex.org/W4313320040","https://openalex.org/W4310880131","https://openalex.org/W4289357384","https://openalex.org/W3036261569","https://openalex.org/W2889950528","https://openalex.org/W2753725918","https://openalex.org/W2296713838","https://openalex.org/W1968776045","https://openalex.org/W1517019597"],"abstract_inverted_index":{"A":[0],"huge":[1],"increase":[2],"in":[3,6,193],"traffic":[4,28,54],"flow":[5],"large":[7],"cities":[8],"has":[9],"created":[10],"serious":[11],"problems":[12],"for":[13,22,24,68,135,162],"urban":[14],"planning":[15],"and":[16,73,83,104,115,137,144,211],"transit":[17],"authorities,":[18],"as":[19,75,77],"they":[20],"seek":[21],"solutions":[23],"handling":[25],"increasingly":[26],"larger":[27],"jams.":[29],"In":[30],"this":[31,60],"paper,":[32],"we":[33],"describe":[34],"part":[35],"of":[36,59,65,80,101,123,126],"an":[37],"automated":[38],"system":[39,94],"designed":[40],"to":[41,52,86,129,172],"extract":[42],"information":[43],"from":[44],"videos":[45,96],"captured":[46],"by":[47,180],"closed-circuit":[48],"surveillance":[49],"camera":[50],"systems":[51],"perform":[53],"monitoring.":[55],"The":[56],"main":[57],"contributions":[58],"paper":[61],"are":[62],"a":[63,108,132,197],"combination":[64],"known":[66],"methods":[67],"performing":[69],"robust":[70],"vehicle":[71],"detection":[72],"counting":[74],"well":[76],"the":[78,81,102,105,112,121,168,173,190,194,215],"adaptation":[79],"Viola":[82,114],"Jones":[84,116],"framework":[85],"deal":[87],"with":[88],"occlusion":[89,148],"events.":[90],"We":[91,118,151],"tested":[92],"our":[93,127,181,204],"on":[95,140,189,214],"acquired":[97],"at":[98,157],"different":[99,142],"times":[100],"day":[103],"results":[106,122],"show":[107],"dear":[109],"improvement":[110],"over":[111],"traditional":[113],"method.":[117],"also":[119],"compared":[120,171],"two":[124],"versions":[125],"approach":[128],"YOLO":[130,154,184],"V3,":[131],"state-of-the-art":[133],"method":[134],"detecting":[136],"classifying":[138],"objects,":[139],"three":[141],"computers,":[143],"achieved":[145,179,206],"slightly":[146],"lower":[147],"solving":[149],"rates.":[150],"emphasize":[152],"that":[153],"V3":[155],"worked":[156],"very":[158],"low":[159],"FPS":[160,213],"rates":[161,178,208],"one":[163],"computer":[164],"when":[165,170],"not":[166,186],"using":[167],"GPU,":[169],"Frames":[174],"Per":[175],"Second":[176],"(FPS)":[177],"approach.":[182],"Moreover,":[183],"could":[185],"be":[187],"executed":[188],"notebook":[191],"used":[192],"experiments":[195],"or":[196],"low-budget":[198],"device":[199],"Raspberry":[200,216],"Pi":[201,217],"2,":[202],"while":[203],"approaches":[205],"processing":[207],"between":[209],"8":[210],"10":[212],"2":[218],"model.":[219]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2966573791","counts_by_year":[{"year":2021,"cited_by_count":1},{"year":2019,"cited_by_count":1}],"updated_date":"2025-01-16T03:46:23.665642","created_date":"2019-08-13"}