{"id":"https://openalex.org/W2965584446","doi":"https://doi.org/10.1109/iwssip.2019.8787247","title":"Automatic Fuzzy Segmentation of Textural Images Using Adaptive Divergence Affinity Functions","display_name":"Automatic Fuzzy Segmentation of Textural Images Using Adaptive Divergence Affinity Functions","publication_year":2019,"publication_date":"2019-06-01","ids":{"openalex":"https://openalex.org/W2965584446","doi":"https://doi.org/10.1109/iwssip.2019.8787247","mag":"2965584446"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/iwssip.2019.8787247","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5103862273","display_name":"Jose Silva Neto","orcid":null},"institutions":[{"id":"https://openalex.org/I35046152","display_name":"Universidade Federal do Rio Grande do Norte","ror":"https://ror.org/04wn09761","country_code":"BR","type":"education","lineage":["https://openalex.org/I35046152"]}],"countries":["BR"],"is_corresponding":false,"raw_author_name":"Jose Silva Neto","raw_affiliation_strings":["Federal University of Rio Grande do Norte, Natal, Brazil"],"affiliations":[{"raw_affiliation_string":"Federal University of Rio Grande do Norte, Natal, Brazil","institution_ids":["https://openalex.org/I35046152"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5033568532","display_name":"Waldson P. N. Leandro","orcid":null},"institutions":[{"id":"https://openalex.org/I35046152","display_name":"Universidade Federal do Rio Grande do Norte","ror":"https://ror.org/04wn09761","country_code":"BR","type":"education","lineage":["https://openalex.org/I35046152"]}],"countries":["BR"],"is_corresponding":false,"raw_author_name":"Waldson Leandro","raw_affiliation_strings":["Federal University of Rio Grande do Norte, Natal, Brazil"],"affiliations":[{"raw_affiliation_string":"Federal University of Rio Grande do Norte, Natal, Brazil","institution_ids":["https://openalex.org/I35046152"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5056577463","display_name":"Matheus Gadelha","orcid":"https://orcid.org/0000-0002-4971-7980"},"institutions":[{"id":"https://openalex.org/I880818075","display_name":"Federal Police of Brazil","ror":"https://ror.org/01hmd1y41","country_code":"BR","type":"government","lineage":["https://openalex.org/I2801200668","https://openalex.org/I4210115982","https://openalex.org/I880818075"]}],"countries":["BR"],"is_corresponding":false,"raw_author_name":"Matheus Gadelha","raw_affiliation_strings":["Brazilian Federal Rodoviary Police, Guara, Brazil"],"affiliations":[{"raw_affiliation_string":"Brazilian Federal Rodoviary Police, Guara, Brazil","institution_ids":["https://openalex.org/I880818075"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5062269059","display_name":"Tiago Santos","orcid":"https://orcid.org/0000-0001-8729-2787"},"institutions":[{"id":"https://openalex.org/I8961855","display_name":"Universidad Nacional Aut\u00f3noma de M\u00e9xico","ror":"https://ror.org/01tmp8f25","country_code":"MX","type":"education","lineage":["https://openalex.org/I8961855"]}],"countries":["MX"],"is_corresponding":false,"raw_author_name":"Tiago Santos","raw_affiliation_strings":["National Autonomous University of Mexico, Mexico City, Mexico"],"affiliations":[{"raw_affiliation_string":"National Autonomous University of Mexico, Mexico City, Mexico","institution_ids":["https://openalex.org/I8961855"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5059024357","display_name":"Bruno M. Carvalho","orcid":"https://orcid.org/0000-0002-9122-0257"},"institutions":[{"id":"https://openalex.org/I35046152","display_name":"Universidade Federal do Rio Grande do Norte","ror":"https://ror.org/04wn09761","country_code":"BR","type":"education","lineage":["https://openalex.org/I35046152"]}],"countries":["BR"],"is_corresponding":false,"raw_author_name":"Bruno M. Carvalho","raw_affiliation_strings":["Federal University of Rio Grande do Norte, Natal, Brazil"],"affiliations":[{"raw_affiliation_string":"Federal University of Rio Grande do Norte, Natal, Brazil","institution_ids":["https://openalex.org/I35046152"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5067969093","display_name":"Edgar Gardu\u00f1o","orcid":"https://orcid.org/0000-0001-7262-4443"},"institutions":[{"id":"https://openalex.org/I24603500","display_name":"University of Massachusetts Amherst","ror":"https://ror.org/0072zz521","country_code":"US","type":"education","lineage":["https://openalex.org/I24603500"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Edgar Garduno","raw_affiliation_strings":["University of Massachusetts, Amherst, USA"],"affiliations":[{"raw_affiliation_string":"University of Massachusetts, Amherst, USA","institution_ids":["https://openalex.org/I24603500"]}]}],"institution_assertions":[],"countries_distinct_count":3,"institutions_distinct_count":4,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.0,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":1,"citation_normalized_percentile":{"value":0.224675,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":61,"max":69},"biblio":{"volume":null,"issue":null,"first_page":"51","last_page":"56"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10627","display_name":"Advanced Image and Video Retrieval Techniques","score":0.9981,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10627","display_name":"Advanced Image and Video Retrieval Techniques","score":0.9981,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10824","display_name":"Image Retrieval and Classification Techniques","score":0.9977,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10052","display_name":"Medical Image Segmentation Techniques","score":0.9967,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/segmentation-based-object-categorization","display_name":"Segmentation-based object categorization","score":0.5345826}],"concepts":[{"id":"https://openalex.org/C124504099","wikidata":"https://www.wikidata.org/wiki/Q56933","display_name":"Image segmentation","level":3,"score":0.7117714},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.7074313},{"id":"https://openalex.org/C89600930","wikidata":"https://www.wikidata.org/wiki/Q1423946","display_name":"Segmentation","level":2,"score":0.6749167},{"id":"https://openalex.org/C65885262","wikidata":"https://www.wikidata.org/wiki/Q7429708","display_name":"Scale-space segmentation","level":4,"score":0.6540981},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.65005064},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.61319286},{"id":"https://openalex.org/C63099799","wikidata":"https://www.wikidata.org/wiki/Q17147001","display_name":"Image texture","level":4,"score":0.60380954},{"id":"https://openalex.org/C31972630","wikidata":"https://www.wikidata.org/wiki/Q844240","display_name":"Computer vision","level":1,"score":0.56385857},{"id":"https://openalex.org/C58166","wikidata":"https://www.wikidata.org/wiki/Q224821","display_name":"Fuzzy logic","level":2,"score":0.55180675},{"id":"https://openalex.org/C25694479","wikidata":"https://www.wikidata.org/wiki/Q7446278","display_name":"Segmentation-based object categorization","level":5,"score":0.5345826},{"id":"https://openalex.org/C42314347","wikidata":"https://www.wikidata.org/wiki/Q6865488","display_name":"Minimum spanning tree-based segmentation","level":5,"score":0.41575503}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/iwssip.2019.8787247","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"id":"https://metadata.un.org/sdg/11","score":0.61,"display_name":"Sustainable cities and communities"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":26,"referenced_works":["https://openalex.org/W1490341226","https://openalex.org/W1517295254","https://openalex.org/W1603679155","https://openalex.org/W1965555277","https://openalex.org/W1987869189","https://openalex.org/W1993456370","https://openalex.org/W2007795425","https://openalex.org/W2031567927","https://openalex.org/W2031586513","https://openalex.org/W2049694710","https://openalex.org/W2054252059","https://openalex.org/W2101608218","https://openalex.org/W2111172731","https://openalex.org/W2120084270","https://openalex.org/W2130669657","https://openalex.org/W2141619954","https://openalex.org/W2150753219","https://openalex.org/W2158763304","https://openalex.org/W2163896344","https://openalex.org/W2171612090","https://openalex.org/W2395611524","https://openalex.org/W2548134678","https://openalex.org/W2740997541","https://openalex.org/W4244494905","https://openalex.org/W4300857373","https://openalex.org/W819977924"],"related_works":["https://openalex.org/W3196005494","https://openalex.org/W3017192027","https://openalex.org/W29240789","https://openalex.org/W2386159816","https://openalex.org/W2344590996","https://openalex.org/W2204605857","https://openalex.org/W2170380303","https://openalex.org/W2093085045","https://openalex.org/W1987161814","https://openalex.org/W1538326369"],"abstract_inverted_index":{"The":[0,133],"goal":[1],"of":[2,24,44,75,128,183],"digital":[3,17],"image":[4,18,138],"segmentation":[5,34,47,79,88,178],"is":[6],"to":[7,11,90,125],"assign":[8],"different":[9,12,38,146],"labels":[10],"objects":[13,57,99],"present":[14],"in":[15,100],"a":[16,174],"or":[19],"volume.":[20],"A":[21],"wide":[22],"variety":[23],"sources":[25],"have":[26],"been":[27],"successfully":[28],"segmented":[29],"by":[30,62,70,116,173],"the":[31,41,45,76,86,121,126,129,137,140,162,170,181],"traditional":[32,42,77],"fuzzy":[33,46,72,78,87],"algorithm":[35,48,89,134],"on":[36,113,153],"several":[37],"applications.":[39],"However,":[40],"approach":[43],"usually":[49],"does":[50],"not":[51],"work":[52],"well":[53],"when":[54],"dealing":[55],"with":[56,139,169],"whose":[58],"materials":[59],"are":[60],"characterized":[61],"complex":[63],"textures":[64],"that":[65,143,156],"cannot":[66],"be":[67,145],"accurately":[68],"represented":[69],"simple":[71],"affinity":[73,94,105],"functions":[74,95,106],"algorithm.":[80],"In":[81],"this":[82],"paper,":[83],"we":[84],"extend":[85],"use":[91],"adaptive":[92,104],"textural":[93],"for":[96,147],"segmenting":[97],"these":[98],"2D":[101],"images.":[102],"These":[103],"define":[107],"their":[108],"optimal":[109],"appropriate":[110,141],"neighborhood":[111,142],"size":[112],"execution":[114],"time,":[115],"computing":[117],"texture":[118,130,177],"descriptors":[119],"surrounding":[120],"seed":[122],"spells,":[123],"according":[124],"characteristics":[127],"being":[131],"processed.":[132],"then":[135],"segments":[136],"may":[144],"each":[148],"object.":[149],"We":[150],"performed":[151],"experiments":[152],"mosaic":[154],"images":[155,160],"were":[157],"composed":[158],"using":[159],"from":[161],"Brodatz":[163],"database,":[164],"and":[165],"compared":[166],"our":[167,184],"results":[168],"ones":[171],"produced":[172],"recently":[175],"published":[176],"algorithm,":[179],"showing":[180],"applicability":[182],"method.":[185]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2965584446","counts_by_year":[{"year":2023,"cited_by_count":1}],"updated_date":"2024-12-19T03:48:21.531907","created_date":"2019-08-13"}